A Formula Collection

In this formula collection, those formulae are summarized which are used in the programs of the Tübingen NLTE Model-Atmosphere Package (TMAP). The abbreviations for the different transitions (CBF- ...) refer to those of Sect. 1. The last numbers of the section titles are the formula numbers which have to be inserted in the atomic data file (ATOMS, Sect. 2, 2.2).

A.1 CBB Transitions

A.1.1 van-Regemorter Formula (Allowed Dipole Transitions)

              ------       |_                _ | 
               8k    V ~ --         ( EH  )2
Cij =  pa02V ~ -----ne   T  |_ 14.5fij  ----    _| u0e - u0Γ (u0 )
              pme                     E0

u0  = hnij/kT  ,   E0 =  hnij,   Γ (u0 ) = max  [¯g, 0.276eu0E1  (u0 )]

¯g = 0.2 for n’/=n else = 0.7. EH is the ionization energy of the hydrogen ground state.

        ------
         8k
pa02V~  ----- = 5.465  .10 -11
        pme
2 input parameters: fij, ¯g

A.1.2 Forbidden Transitions

                 -6
       8.631-.10----    -u0
Cij =     g  V~  T    nee    Ω
           i

      NF sum  IT      i-1
Ω  =       ai .x
       i=1
NFIT+1 input parameters: NFIT, a1, ... , aNFIT
for the effective collision strength. Is only one parameter supplied (explicitly: 1), then Ω = 1 is set.

A.1.3 Hydrogen

following Mihalas

                ------
                       V ~ --(      )2
Cij  = 4pa02V~  -8k--ne   T   EH---   u0fij (E1 (u0) + 0.148u0E5   (u0)) g
                pme           hnij

g = b + 2(a - b )/Δn   for   Δn  > 1,  and   g =  1  else  b = 3 - 1.2/n ,   a = 1.8-  0.4/n2
                                                                         i                  i
no input parameter

A.1.4 He II

following Mihalas & Stone

              ------
               8k    V ~ --( EH   )2        (                    )
Cij =  pa02V ~ -----ne   T   -----   u0fije  e- u0 ln 2 + E1 (u0 ) g
              pme           hnij

                         [                  ]
                                     n----1-
g =  min  [ni, 1.1] .min   Δni, ni -   Δn
no input parameter

A.1.5 He I: Allowed Transitions from its Ground State

following Mihalas & Stone

               ------     --   (      )2
C   =  4pa  2 V~  -8k--n  V~  Tf     EH---   u E  (u  )
  1j       0    pme   e      1j  hn1j     0  1   0
1 input parameter: f1j

A.1.6 He I: Allowed Transitions but not from its Ground State
following Mihalas & Stone

                ------
                 8k    V ~ --   ( E    )2    (           u                )
Cij  = 4pa02V~  -----ne   T fij  --H--   u0  E1 (u0 )-  --0e- 0.2(E1 (u1 )
                pme              hn1j                   u1

u1 =  u0 +  0.2
1 input parameter: fij

A.1.7 He I: Forbidden Transitions from its Ground State
following Mihalas & Stone

              ------    --               [                                            ]
C   = pa   2 V~ -8k--n   V~  T--a---u  --1--- a E  (u ) +  a u  e-b1u0x  +  a u  e- b2u0x
 ij       0   pme    e    neff 3  0pa02    0  1  0      1  0        1    2  0        2

        (       1)
      bi u0 +  c1  + 2
xi =  ---(------1-)3----
          u0 +  ci

            ------
             EH
neff  = ZV ~  -----  (Z =  1)
             hnth
8 input parameters: a, ai, bi, ci (found in tabular form in M&S; Attention: their equation A16 is wrong!)

A.1.8 He I: Forbidden Transitions between its n = 2 Sublevels
following Mihalas & Stone

              ------    --
C   =  pa  2 V~ -8k--n   V~  T e-E0/kT Γ (T )
 ij       0   pme    e              ij

E0  = hnij

                                      -2
log Γ =  c0 +  c1 log T + c- 2 (log T )
3 input parameters: c0, c1, c-2 (in tabular form by M&S)

A.1.9 Unknown Collisional Cross-Sections

              ------
                8k     V~ --
Cij =  pa02V ~ ----- ne  T e- u0 (1 + u0 )
              pme
no input parameter

A.1.10 Ω-Fit of 3rd Degree
like A.1.2, but:

       sum 4
Ω  =     ai (log T )i-1
      i=1
4 input parameters: a1, a2, a3, a4

A.1.11 Mg II: Allowed Transitions from its Ground State
following Mihalas (1972)

              ------
               8k    V ~ --    EH  2   (                   )
Cij =  pa02V ~ -----ne   T 4fij---- u0  aE1  (u0) +  be-u0
              pme              E0
2 input parameters: a, b

A.1.12 van-Regemorter: Combined Levels of Complex Ions

              ------
                8k     V~  --
Cij  = pa02V ~  -----ne   Te -u0Γ ij(T )
               pme
log Γ  (T ) =  a  + a  x + a  x2 + a  x3,   x =  log kT   [in eV  ]
      ij         0     1      2       3
4 input parameters: a0, a1, a2, a3

A.1.21 He I: Transition between its Levels with s < 4
D. Hummer, priv. comm.
no input parameter

A.1.25 Ω-Fit in Temperature, General Case
equal to DETAIL Formula No. 25,
8 input parameters

A.1.26 Ω-Fit in log T, General Case
equal to DETAIL Formula No. 26,

      NF sum  IT
Ω  =       ai (log T -  T1)i-1
       i=1
NFIT+2 input parameters: T1, NFIT, a1, ..., aNFIT

A.2 CBF Transitions

A.2.1 Hydrogen, n = 1,..., 10
following Mihalas

              ------
                8k    V ~ --
Cik  = pa02V ~  -----ne   T e-hnth/kTΓ i(T)
               pme
own fit formulae for Γ, because Mihalas is restricted in temperature,
no input parameter

A.2.2 He II, n = 1,..., 10
following Mihalas, like CBF1, own fit formulae for Γ, because Mihalas is restricted in temperature,
no input parameter

A.2.3 He I, n < 15
              ------         {                      2                          (          )}
           2 V~ -8k--  V ~ --                  0.728u0---                   2 -u0   2.0-+-u2--
Cik =  pa0    pme  ne   T s0  u0E1  (u0) -     u1     E1(u1 ) - 0.189u0   e        u23

u0  = hnth/kT   , u1 =  u0 + 0.27,  u2 =  u0 +  1.43
1 input parameter: s0 (in tabular form by Mihalas & Stone)

A.2.4 Seaton Formula

                13       -1---- u0  - 1
Cik =  1.55 .10   ¯gs0ne   V~ --e    u0     ¯g =  [0.1,0.2, 0.3]  for  Z =  [1,2, >  3]
                           T
Z = charge of the ion s0 = threshold photoionization cross-section
2 input parameters: s0, ¯g

In case that formula 4 is requested and a cross-section of 0.0 inserted, a mean cross-section (at the threshold energy) of the Opacity Project data is calculated and used as threshold cross-section (Sect. A.4).

A.2.5 Lotz Formula

              ------         (    )2    {                        }
           2 V~  -8k--   V~  --    EH--                  au0--
Cik =  pa0     pm   ne   TP    E     u0   E1 (u0) -   u  E1 (u1 )
                   e             0                     1
3 input parameters: P, a, c
u1 = u0 + c

A.2.6 Mg II 3s --> Mg III 2p6 + e
following Mihalas (1972)

              ------       (     )2
C    = pa  2 V~  -8k--n   V~ T-  EH--   {au  E  (u ) + b (u /u  )2[E  (u ) +  e-u1]}
  ik      0    pme    e      E0         0  1  0        0   1     1  1
u1 =  u0 +  c
3 input parameters: a, b, c

A.3 RBB Transitions

A.3.1 Doppler Profiles

       V~  -- 2
sij = ---pe---fij-e -(Δn/ΔnD )2
       mec   ΔnD

             ----------
Δn    =  n0 V~  --2kT----
    D    c    mAT  OM
1 input parameter: fij

A.3.2 Voigt Profiles, only Radiative Damping

        V~ --
         pe2  fij
sij =  -----------H  (a, v)
       mec   ΔnD

        Γ             Δn
a =  --------,   v =  -----,  Γ  = Γ low  + Γ up
     4p ΔnD           ΔnD
2 input parameters: fij, Γ

A.3.3 Voigt Profiles, Radiative and Collisional Damping (Electrons)

sij like in A.3.2, but:

Γ =  Γ rad + Γ St

                       (   up 2)2
Γ St = 6.11 .10 - 5 n V~ e-- n-eff-
                     T      z
(Cowley 19701971) 3 input parameters: fij, Γrad, ( up 2)
 neff-
  z+12

A.3.4 Voigt Profiles and “Stark Wings” (Linear Stark Effect)

            [  Formel 3   St]
sij =  max   sij       ,sij

                        (              )
  St   0.0368  .Zfij      ΔnZ   .1.385
sij =  --------------U    --------------
         snzMikro           snzMikro

srmn  = {nup  (nup -  1) + nlow (nlow  - 1 )}

           [NION          ]23
              sum       32
zMikro  =         Zi  .ni
             i=1
6 input parameters: fij, Γrad, (nupeff2)
   z+12, Z, n low, nup

A.3.5 Stark Line Broadening following Dimitrijévic

like formula 3

A.4 RBF Transitions

A.4.1 Seaton Formula

          (    )s [                ]
s   =  s   nth-   a  + (1 -  a )nth-
  n     0   n                    n

                                          4
hydrogen    - like  :  s  =  2.815 .1029 z--gII (nth)-
                        0                 n5   nth3
                                            eff

with the effective principal quantum number

           ----
          V~  R---
neff =  z   nth

gII is the bound-free gaunt factor

z core charge of the ion
3 input parameters: s0,a,s

A.4.2 Seaton Formula with Gaunt Factor

         (    )  [                 ]
           nth- s              nth-
sn =  s0    n     a +  (1 - a ) n   gII (x, y,z )
6 input parameters: s0,a,s,x,y,z

A.4.3 Koester Formula for He I
A&A,

ln (gsn ) = a0 +  a1 ln c +  a2 ln2 c,     c[˚A ]
3 input parameters: a0,a1,a2

A.4.4 Opacity-Project Photoionization Cross-Sections, Seaton tails

See Sect. A.4.10.

A.4.5 Karzas & Latter data with Gaunt Factor

Tables taken from Karzas & Latter (1961) are used to calculate the photoionization cross-sections.

3 input parameters: zeff, n (principal quantum number), l (azimuthal quantum number)

A.4.10 Opacity-Project Photoionization Cross-Sections

The Opacity Project data for a level of the ion XXXX are read from the file OP_RBF_XXXX (Sect. 8.1). The programs recognize an A10 label at the begin of the data set which represents the level name in TMAP code (Sect. 2.1). For the actual frequency grid FGRID (Sect. 3), the cross-sections are interpolated or extrapolated (including possible resonances etc.). Is formula 4 requested and a cross-section of 0.0 inserted, a mean cross-section (at the threshold energy) of the Opacity Project data is calculated and used as threshold cross-section.
no input parameter

A.4.12 DETAIL Fit Formula

          sum 5     [  (nth )]i
ln sn =     ai .  ln   ----
         i=0           n
6 input parameters: a0,...,a5

A.5 RFF Transitions

None of the RFF formulae needs an input parameter.

A.5.1 Including Contributions of LTE Levels (Unsöld)

                       8  hn   /kT  Z2
skk(n, T) =  3.694 .10  e   min   --3 V~ --
                                  n    T

n     =  min [n,n     ]
  min             LTE
nLTE is the ionization threshold energy of the lowest LTE level.

(cf.  Unsöld 1968)

A.5.2 Including Contributions of LTE Levels with Gaunt Factors

                        8 [           hn   /kT      ]   Z2
skk (n,T ) = 3.694  .10   gff (n,T )(e  min    -  1)  -3 V~ ---
                                                      n    T

A.5.3 With Gaunt Factors, no LTE Contributions

                                     Z2
skk (n, T) =  3.694 .108gff  (n,T )--V ~ --
                                   n3   T

For the free-free Gaunt factors, the default is a calculation following Mihalas (1967, ApJ 149, 169). Since these values are calculated from a fit formula within 100 < c < 10000 Å and an extension to longer wavelengths, data (valid from submillimetre to hard X-ray wavelengths and for temperatures from 10 - 109 K) provided by Sutherland (1998) can be chosen by input card (Sect. 5.4).