Institut für Astronomie und AstrophysikAbteilung AstronomieWaldhäuser Str. 64, D-72076 Tübingen, Germany |
POLINT
Interpolate a set of N points by fitting a polynomial of degree N-1
Adapted from algorithm in Numerical Recipes, Press et al. (1992), Section 3.1.
POLINT, xa, ya, x, y, [ dy ]
XA - X Numeric vector, all values must be distinct. The number of values in XA should rarely exceed 10 (i.e. a 9th order polynomial) YA - Y Numeric vector, same number of elements X - Numeric scalar specifying value to be interpolated
Y - Scalar, interpolated value in (XA,YA) corresponding to X
DY - Error estimate on Y, scalar
Find sin(2.5) by polynomial interpolation on sin(indgen(10)) IDL> xa = indgen(10) IDL> ya = sin( xa ) IDL> polint, xa, ya, 2.5, y ,dy The above method gives y = .5988 & dy = 3.1e-4 a close approximation to the actual sin(2.5) = .5985
Uses Neville's algorithm to iteratively build up the correct polynomial, with each iteration containing one higher order.
Written W. Landsman January, 1992 Converted to IDL V5.0 W. Landsman September 1997
[Home Page] [Software, Documentation] [IDL Documentation] [Quick Reference] [Feedback]