Institut für Astronomie und AstrophysikAbteilung AstronomieSand 1, D-72076 Tübingen, GermanyNew Address! -- Neue Adresse! |
GAUSSIAN
Compute the 1-d Gaussian function and optionally the derivative
Compute the 1-D Gaussian function and optionally the derivative at an array of points.
y = gaussian( xi, parms,[ pderiv ])
xi = array, independent variable of Gaussian function. parms = parameters of Gaussian, 2, 3 or 4 element array: parms[0] = maximum value (factor) of Gaussian, parms[1] = mean value (center) of Gaussian, parms[2] = standard deviation (sigma) of Gaussian. (if parms has only 2 elements then sigma taken from previous call to gaussian(), which is stored in a common block). parms[3] = optional, constant offset added to Gaussian.
y - Function returns array of Gaussian evaluated at xi. Values will be floating pt. (even if xi is double) unless the /DOUBLE keyword is set.
/DOUBLE - set this keyword to return double precision for both the function values and (optionally) the partial derivatives.
pderiv = [N,3] or [N,4] output array of partial derivatives, computed only if parameter is present in call. pderiv[*,i] = partial derivative at all xi absisca values with respect to parms[i], i=0,1,2,[3].
Evaulate a Gaussian centered at x=0, with sigma=1, and a peak value of 10 at the points 0.5 and 1.5. Also compute the derivative IDL> f = gaussian( [0.5,1.5], [10,0,1], DERIV ) ==> f= [8.825,3.25]. DERIV will be a 2 x 3 array containing the numerical derivative at the two points with respect to the 3 parameters.
None
Written, Frank Varosi NASA/GSFC 1992. Converted to IDL V5.0 W. Landsman September 1997 Use machar() for machine precision, added /DOUBLE keyword, add optional constant 4th parameter W. Landsman November 2001
[Home Page] [Software, Documentation] [IDL Documentation] [Quick Reference] [Feedback]