Institut für Astronomie und AstrophysikAbteilung AstronomieSand 1, D-72076 Tübingen, Germany |
HOR2EQ
Converts local horizon coords (alt-az) of something to equatorial (ra-dec).
This is a nice code to calculate equatorial (ra,dec) coordinates from horizon (alt,az) coords. It is typically accurate to about 1 arcsecond or better (I have checked the output against the publicly available XEPHEM software). It preforms precession, nutation, abberation, and refraction corrections. The perhaps best thing about it is that it can take arrays as inputs, in all variables and keywords EXCEPT Lat, lon, and Altitude (the code assumes these aren't changing), and uses vector arithmetic in every calculation except when calculating the precession matrices.
HOR2EQ, alt, az, jd, ra, dec, [ha, LAT= , LON= , /WS, OBSNAME= , $ /B1950 , PRECESS_= 0, NUTATE_= 0, REFRACT_= 0, $ ABERRATION_= 0, ALTITUDE= , /VERBOSE, _EXTRA= ] INPUT VARIABLES alt : altitude (in degrees) [scalar or vector] az : azimuth angle (in degrees, measured EAST from NORTH, but see keyword WS below.) [scalar or vector] JD : Julian Date [scalar or vector] Note: if RA and DEC are arrays, then alt and az will also be arrays. If RA and DEC are arrays, JD may be a scalar OR an array of the same dimensionality.
lat : north geodetic latitude of location in degrees lon : EAST longitude of location in degrees (Specify west longitude with a negative sign.) /WS : Set this to get the azimuth measured westward from south (not East of North). obsname : Set this to a valid observatory name to be used by the astrolib OBSERVATORY procedure, which will return the latitude and longitude to be used by this program. /B1950 : Set this if your ra and dec are specified in B1950, FK4 coordinates (instead of J2000, FK5) precess_ : Set this to 1 to force precession [default], 0 for no precession. nutate_ : Set this to 1 to force nutation [default], 0 for no nutation. aberration_ : Set this to 1 to force aberration correction [default], 0 for no correction. refract_ : Set to 1 to force refraction correction [default], 0 for no correction. altitude: The altitude of the observing location, in meters. [default=0]. /verbose: Set this for verbose output. The default is verbose=0. _extra: This is for setting TEMPERATURE or PRESSURE explicity, which are used by CO_REFRACT to calculate the refraction effect of the atmosphere. If you don't set these, the program will make an intelligent guess as to what they are (taking into account your altitude). See CO_REFRACT for more details. OUTPUT VARIABLES ra : Right Ascension of object (J2000) in degrees (FK5); scalar or vector. dec : Declination of object (J2000) in degrees (FK5), scalar or vector. ha : hour angle (in degrees) (optional)
NUTATE, PRECESS, ADSTRING(), SUNPOS, OBSERVATORY (from the astrolib) CO_NUTATE, CO_ABERRATION, CO_REFRACT, HADEC2ALTAZ BASIC STEPS Precess Ra-Dec to current equinox. Nutation Correction to Ra-Dec Aberration correction to Ra-Dec Calculate Local Mean Sidereal Time Calculate Local Apparent Sidereal Time Calculate Hour Angle Do Spherical Trig to find Apparent Alt-Az Apply refraction correction to find observed Alt.
* Deflection of Light by the sun due to GR. (typically milliarcseconds, can be arseconds within one degree of the sun) * The Effect of Annual Parallax (typically < 1 arcsecond) * and more (see below) TO DO * Better Refraction Correction. Need to put in wavelength dependence, and integrate through the atmosphere. * Topocentric Parallax Correction (will take into account elevation of the observatory) * Proper Motion (but this will require crazy lookup tables or something). * Difference between UTC and UT1 in determining LAST -- is this important? * Effect of Annual Parallax (is this the same as topocentric Parallax?) * Polar Motion * Better connection to Julian Date Calculator.
You are at Kitt Peak National Observatory, looking at a star at azimuth angle 264d 55m 06s and elevation 37d 54m 41s (in the visible). Today is Dec 25, 2041 and the local time is 10 PM precisely. What is the ra and dec (J2000) of the star you're looking at? The temperature here is about 0 Celsius, and the pressure is 781 millibars. The Julian date for this time is 2466879.7083333 IDL> hor2eq, ten(37,54,41), ten(264,55,06), 2466879.7083333d, ra, dec, $ /verb, obs='kpno', pres=781.0, temp=273.0 The program produces this output (because the VERBOSE keyword was set): Latitude = +31 57 48.0 Longitude = *** 36 0.0 ; longitude prints weirdly b/c of negative input to ADSTRING!! Julian Date = 2466879.708333 Az, El = 17 39 40.4 +37 54 41.0 (Observer Coords) Az, El = 17 39 40.4 +37 53 39.6 (Apparent Coords) LMST = +03 53 54.1 LAST = +03 53 53.6 Hour Angle = +03 38 30.1 (hh:mm:ss) Ra, Dec: 00 15 23.5 +15 25 1.9 (Apparent Coords) Ra, Dec: 00 15 24.2 +15 25 0.1 (J2041.9841) Ra, Dec: 00 13 14.1 +15 11 0.3 (J2000) The star is therefore Algenib! Compare the derived Ra, Dec with what XEPHEM got: Ra, Dec: 00 13 14.2 +15 11 1.0 (J2000)
Chris O'Dell Univ. of Wisconsin-Madison Observational Cosmology Laboratory Email: odell@cmb.physics.wisc.edu
[Home Page] [Software, Documentation] [IDL Documentation] [Quick Reference] [Feedback]