Institut für Astronomie und AstrophysikAbteilung AstronomieSand 1, D-72076 Tübingen, Germany |
keplereq
Solve Kepler's Equation
Solve Kepler's Equation. Method by S. Mikkola (1987) Celestial Mechanics, 40 , 329-334. result from Mikkola then used as starting value for Newton-Raphson iteration to extend the applicability of this function to higher eccentricities
Celestial Mechanics
eccanom=keplereq(m,ecc)
m - Mean anomaly (radians; can be an array) ecc - Eccentricity
thresh: stopping criterion for the Newton Raphson iteration; the iteration stops once abs(E-Eold)<thresh
the function returns the eccentric anomaly
2002/05/29 - Marc W. Buie, Lowell Observatory. Ported from fortran routines supplied by Larry Wasserman and Ted Bowell. http://www.lowell.edu/users/buie/ 2002-09-09 -- Joern Wilms, IAA Tuebingen, Astronomie. use analytical values obtained for the low eccentricity case as starting values for a Newton-Raphson method to allow high eccentricity values as well $Log: keplereq.pro,v $ Revision 1.3 2005/05/25 16:11:35 wilms speed up: Newton Raphson is only done if necessary (i.e., almost never) Revision 1.2 2004/08/05 10:02:05 wilms now also works for more than 32000 time values Revision 1.1 2002/09/09 14:54:11 wilms initial release into aitlib
[Home Page] [Software, Documentation] [IDL Documentation] [Quick Reference] [Feedback]