[AIT logo]

Institut für Astronomie und Astrophysik

Abteilung Astronomie

Sand 1, D-72076 Tübingen, Germany
[Uni logo]

Hinweis: Einige Seiten auf astro.uni-tuebingen.de können veraltet sein und werden nicht mehr aktualisiert.
Note: Some webpages at astro.uni-tuebingen.de may be outdated and will no longer be updated.

Preprint A/11

Phase-resolved spectroscopic study of the isolated neutron star RBS 1223 (1RXS J130848.6+212708)

Hambaryan, V. (1), Suleimanov, V. (2,3), Schwope, A. D. (4), Neuh\"auser, R. (1), Werner, K. (2), Potekhin, A. Y. (5,6,7)

(1) Astrophysikalisches Institut und Universitäts-Sternwarte, Universität Jena, Schillergässchen 2-3, 07745, Jena, Germany
(2) Institute for Astronomy and Astrophysics, University of Tuebingen, Germany
(3) Kazan Federal University, Russia
(4) Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482, Potsdam, Germany
(5) Ioffe Physical-Technical Institute, Politekhnicheskaya Str., 26, St. Petersburg, 194021, Russia
(6) CRAL, École Normale Supérieure de Lyon, UMR CNRS No. 5574, Université de Lyon, 69364, Lyon Cedex 07, France
(7) Isaac Newton Institute of Chile, St. Petersburg Branch, Russia

A&A 534 (2011), A74

Abstract. Aims: We constrain the mass-to-radius ratio of isolated neutron stars by performing a spin-phase resolved X-ray spectroscopic analysis.
Methods: We combined the data from all observations of RBS 1223 (1RXS J130848.6+212708) conducted by XMM-Newton EPIC pn with the same instrumental setup in 2003-2007 to form spin-phase resolved spectra. We implemented a number of complex models of neutron stars with strongly magnetized (Bpole ~ 1013-1014 G) surfaces, various temperature and magnetic-field distributions around their magnetic poles, and a partially ionized hydrogen-thin atmosphere above into the X-ray spectral fitting package XSPEC for simultaneous fitting of phase-resolved spectra. A Markov-chain Monte Carlo (MCMC) approach is also applied to verify the results of fitting and estimating of parameters in multi-parameter models.
Results: The spectra of different rotational phase intervals and light curves of different energy bands with high signal-to-noise ratio show a high complexity. The spectra can be parameterized with a Gaussian absorption-line superimposed on a blackbody spectrum, while the pulsed fraction of light curves with double-humped shape strongly depend upon the energy band (13 - 42%), which indicates that radiation emerges from at least two emitting areas.
Conclusions: A model with a condensed iron surface and partially ionized hydrogen-thin atmosphere above allows us to fit simultaneously the observed general spectral shape and the broad absorption feature observed at 0.3 keV in different spin phases of RBS 1223. We constrain some physical properties of the X-ray emitting areas, i.e. the temperatures (Tp1 ~ 105 eV, Tp2 ~ 99 eV), magnetic field strengths (Bp1 ≈ Bp2 ~ 8.6 × 1013 G) at the poles, and their distribution parameters (a1 ~ 0.61, a2 ~ 0.29, indicating an absence of strong toroidal magnetic field component). In addition, we are able to place some constraints on the geometry of the emerging X-ray emission and the gravitational redshift (z = 0.16-0.01+0.03) of RBS 1223. Based on observations obtained with XMM-Newton, an ESA science mission with istruments and contributions directly funded by ESA Member States and NASA.
Key words: stars: neutron, methods: data analysis, X-rays: stars, stars: atmospheres, stars: individual: RBS 1223

[Home Page] [Preprints 2011] [Quick Reference] [Feedback]

Jürgen Barnstedt | Impressum
Last modified 01 Dec 2011
[Valid HTML 4.0!]