[AIT logo]

Institut für Astronomie und Astrophysik

Abteilung Astronomie

Sand 1, D-72076 Tübingen, Germany
[Uni logo]

Hinweis: Einige Seiten auf astro.uni-tuebingen.de können veraltet sein und werden nicht mehr aktualisiert.
Note: Some webpages at astro.uni-tuebingen.de may be outdated and will no longer be updated.

Preprint 03/09

Study of the accreting pulsar 4U 0115+63 with a bulk and thermal Comptonization model

Carlo Ferrigno (2,4), Peter A. Becker (3), Alberto Segreto (1), Teresa Mineo (1), and Andrea Santangelo (2)

(1) IASF-INAF, via Ugo la Malfa 153, 90146 Palermo Italy
(2) IAAT, Abt. Astronomie, Universität Tübingen, Sand 1, 72076 Tübingen, Germany
(3) Department of Computational and Data Sciences George Mason University 4400 University Drive, MS 6A3 Fairfax, VA 22030
(4) ISDC chemin díÉcogia, 16 1290 Versoix Switzerland e-mail: Carlo.Ferrigno@unige.ch

To be published in: A&A

Abstract. We propose a study of the spectral emission from the high mass X-ray binary pulsar 4U 0115+63 by means of thermal and bulk Comptonization models based on the physical properties of such objects.
For this purpose, we analyze the BeppoSAX data in the energy range 0.7-100 keV of the 1999 giant outburst, 12 days after the maximum. We focus first on the phase averaged emission, and then on the phase resolved spectra, by modeling the system using a two-component continuum.
At higher energy, above ∼7 keV, the emission is due to thermal and bulk Comptonization of the seed photons produced by cyclotron cooling of the accretion column, and at lower energy, the emission is due to thermal Comptonization of a blackbody source in a diffuse halo close to the stellar surface. Phase resolved analysis establishes that most of the emission in the main peak comes from the column, while the low energy component gives a nearly constant contribution throughout the phase.
From the best fit parameters, we argue that the cyclotron emission is produced ∼ 1.7 km above the stellar surface, and escapes from the column near its base, where the absorption features are generated by the interaction with the magnetic field in the halo. We find that in 4U 0115+63, the observed spectrum is dominated by reprocessed cyclotron radiation, whereas in other bright sources with stronger magnetic fields such as Her X-1, the spectrum is dominated by reprocessed bremsstrahlung.
Key words: X-rays: binaries, pulsars: individual: 4U 0115+63

Preprint (659 kb PDF file including figures)

[Home Page] [Preprints 2009] [Quick Reference] [Feedback]

| Impressum
Last modified 26 Feb 2009
[Valid HTML 4.0!]