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Question 1: Fourier Transforming a Differential Equation

As shown in the lecture, one of the crucial equations to solve when looking at the emission of radiation
from accelerated charges has the form
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which can be solved using a Green’s functions Ansatz, where the Green’s function G(x,t;x’,t’) is the
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The solutions of this equation can be best obtained when working in Fourier space, where the Fourier
transform is defined through
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and where the inverse transform is
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a) By inserting the inverse Fourier transform of G(x,t;x’,t’), show that
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b) By inserting the inverse Fourier transform of G(x,¢;x’,¢'), show that
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where k = w/ec.

¢) Making use of one of the definitions of the d-function,
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(which you can only use if you are not a mathematician...) and of
Sit—t)=6(t—1) (s1.1)
show that
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