Grundtatsachen über das Universum

Lepartment of Physics University of Warwick

http://astro.uni-tueldingen.de/-wilms/teach/costrio

Inhalt

- "Alte" Kosmologie
 - Raum und Zeit
 - Friedmann-Gleichungen
 - Weltmodelle
- "Moderne" Kosmologie
 - (Urknall)
 - (Inflation)
 - Kosmologische Konstante
 - Strukturentstehung
- Zusammenfassung

Alte Kosmologie

Kosmologie beschäftigt sich mit den Fragen über das Universum als Ganzes:

Wie entwickelte sich das Universum zu dem, was es heute ist?

Dazu Annahme von vier Grundtatsachen:

Das Universum • expandiert,

- ist isotrop,
- und ist homogen.

("kosmologisches Prinzip")

Ferner (für uns) am wichtigsten:

• Das Universum ist für Menschen bewohnbar.

("anthropologisches Prinzip")

Hubble: Spektrallinien der Galaxien rotverschoben in Abhängigkeit von der Entfernung

 \implies "Expansion"

THE UNIVERSITY OF WARWICK

Rotverschiebung:

interpretiert als Geschwindigkeit:

v = cz

wo $c = 300000 \text{ km s}^{-1}$ (Lichtgeschwindigkeit)

2dF QSO Redshift survey

THE UNIVERSITY OF WARWICK

Alte Kosmologie

Expansion des Universums, III

Hubble-Gesetz:

$$v = H_0 d$$

WO

$$H_0 = 72 \pm 8 \, {\rm km \, s^{-1} \, Mpc^{-1}}$$

Langjährige Diskussionen über H_0 sind ausgestanden...

Alte Kosmologie

Homogenität

2dF Survey, \sim 220000 galaxies total

Homogenität: "Das Universum sieht von jedem Ort aus gleich aus" (auf Skalen \gg 100 Mpc).

Alte Kosmologie

THE UNIVERSITY OF WARWICK

Peebles (1993): Verteilung von 31000 Objekten aus dem Greenbank-Katalog ($\lambda = 6 \text{ cm}$)

Das Universum ist isotrop \iff Das Universum sieht in alle Richtungen gleich aus.

N.B. Homogenität impliziert *keine* Isotropie, ebenso wie Isotropie von einem Punkt aus Homogenität impliziert!

Alte Kosmologie

THE UNIVERSITY OF WARWICK

Friedmann Gleichungen, I

Albert Einstein: Anwesenheit von Massen
krümmt den Raum (=Gravitation)
⇒ Allgemeine Relativitätstheorie (ART)
ART ist anwendbar auf Universum als ganzes!

Alte Kosmologie

THE UNIVERSITY OF

Friedmann Gleichungen, II

Theoretische Kosmologie: Kombination von 1. Relativitätstheorie

Alte Kosmologie

THE UNIVERSITY OF

- Kombination von
- 1. Relativitätstheorie
- 2. Thermodynamik

Alte Kosmologie

THE UNIVERSITY OF

Kombination von

- 1. Relativitätstheorie
- 2. Thermodynamik
- 3. Quantenmechanik

THE UNIVERSITY OF

Kombination von

- 1. Relativitätstheorie
- 2. Thermodynamik
- 3. Quantenmechanik
- \implies kompliziert

Alte Kosmologie

THE UNIVERSITY OF

Kombination von

- 1. Relativitätstheorie
- 2. Thermodynamik
- 3. Quantenmechanik
- \implies kompliziert

Normalerweise Rechnung in drei Schritten:

- 1. Bestimme Metrik, die dem kosmologischen Prinzip entspricht
- 2. Erhalte Entwicklungsgleichung aus ART
- 3. Benutze Thermodynamik und

Quantenmechanik für Zustandsgleichung Rest ist dann einfache Rechnung...

Alte Kosmologie

THE UNIVERSITY OF

 $\underline{0}\underline{0}$

Friedmann Gleichungen, VII

A.A. Friedmann, 1888–1925

Raum, der dem kosmologischen Prinzip genügt, wird durch Friedmann-Robertson-Walker-Lemaître Metrik beschrieben:

$${\rm d}s^{\rm 2} = c^{\rm 2} \; {\rm d}t^{\rm 2} - R^{\rm 2}(t) \left[{\rm d}r^{\rm 2} + S_k^{\rm 2}(r) \; {\rm d}\psi^{\rm 2} \right]$$

Wichtig: Skalenfaktor R(t) liefert zeitliche Entwicklung des Universums, wird erhalten aus Lösung der Friedmann-Gleichungen:

$$\begin{split} \ddot{R} &= -\frac{4\pi G}{3}R\left(\rho + \frac{3p}{c^2}\right) + \left[\frac{1}{3}\Lambda R\right]\\ \dot{R}^2 &= +\frac{8\pi G\rho}{3}R^2 - kc^2 + \left[\frac{1}{3}\Lambda R^2\right] \end{split}$$

(k: Krümmung)

THE UNIVERSITY OF

Hubble Parameter, I

Interpretation der kosmologischen Rotverschiebung:

Raum dehnt sich aus (gemäß Friedmann-Gleichungen), Hubble-"Konstante" ist \dot{R}/R .

Ferner gilt für Entwicklung des Hubble-Parameters:

$$H^{2}(t) = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G\rho}{3} - \frac{kc^{2}}{R^{2}} \quad \text{bzw.} \quad \frac{R^{2}}{c} \left(\frac{8\pi G}{3}\rho - H^{2}\right) = k$$

Definiere

$$\Omega = \frac{\rho}{\rho_{\rm c}}$$
 wo $\rho_{\rm c} = \frac{3H^2}{8\pi G}$

so daß

- $\Omega > 1 \Longrightarrow k > 0 \Longrightarrow$ geschlossenes Universum
- $\Omega < \mathbf{1} \Longrightarrow k < \mathbf{0} \Longrightarrow$ offenes Universum

Momentan: $\rho_{\rm c} \sim 1.67 \times 10^{-24} \, {\rm g \, cm^{-3}}$ (3. . . 10 H-Atome/m³).

Alte Kosmologie

Hubble Parameter, II

Was trägt zu Ω bei?

- Gravitierendes Material: Ω_{matter} (= Ω_{m})
- Baryonische Materie: Ω_{b} (Untermenge von Ω_{m})
- Vakuum: Ω_{Λ}

$$\Omega_{\Lambda} = \frac{8\pi G\rho_{\rm V}}{3H^2} = \frac{\Lambda c^2}{3H^2}$$

Konsequenz aus Quantenfeldtheorie und ähnlichen Theorien.

Vorhersage der Inflationstheorie:

 $\Omega = \Omega_{\rm m} + \Omega_{\Lambda} = \mathbf{1}$

 \implies Muß durch Beobachtungen bestätigt werden...

Weltmodelle, I

"Loitering universe" mit $\Omega_{\rm m}=$ 0.55, $\Omega_{\rm Lambda}=$ 2.055

Alte Kosmologie

THE UNIVERSITY OF WARWICK

Weltmodelle, II

Expansion History of the Universe

Zusammenfassung

Moderne Kosmologie = Bestimmung von H_0 , Ω und Λ aus Beobachtungsdaten und Vergleich mit Theorie

Im folgenden: Beispiele für neue Messungen zur Bestimmung von Ω und Λ :

- Supernova-Beobachtungen und
- Kosmischer Mikrowellenhintergrund (WMAP).

Allgemeine Hoffnung: Bestätigung von $\Omega_m + \Omega_\Lambda = 1$.

THE UNIVERSITY OF

SN1994d (HST WFPC)

Supernovae: Leuchtkräfte vergleichbar zu Galaxien: $\sim 10^{51}$ erg/s in Licht, $100 \times$ mehr in Neutrinos.

Supernovae, II

SN Ia = Explosion von CO weißen Zwerg wenn er über Chandrasekhar-Grenze (1.4 M_{\odot}) gestoßen wird (via Accretion?).

⇒ Immer ähnlicher physikalischer Prozess

 \implies Sehr charakteristische Lichtkurven: fast rise, rapid fall, exponential decay (FRED) mit Halbwertszeit von \sim 60 d.

60 d Skala aus radioaktivem Zerfall $Ni^{56} \rightarrow Co^{56} \rightarrow Fe^{56}$ ("Selbstkalibration" der Lichtkurve wenn überall gleiche Menge Ni^{56} produziert wird.)

Beobachtbar bis zu Entfernungen von 1 Gpc ($L \sim 10^{9...10} L_{\odot}$).

Supernovae, III

Eichung durch Beobachtung naher (z < 0.1) SN Ia, generell stimmen Lichtkurven gut überein. \implies Standardkerze

Mögliche Kritikpunkte:

- Vorgeschichte des CO-Weißen Zwergs? (Elementhäufigkeiten?)
- Extinktion in der Hostgalaxie?
- Spektroskopische Pekularitäten
- Verschiedene Abfallraten und Farben (allerdings gute Korrelation max. Helligkeit und Abfallgeschwindigkeit)

Dennoch momentan beste Methode.

Moderne Kosmologie

Supernovae, IV

Moderne Kosmologie

THE UNIVERSITY OF

Supernovae, V

Konfidenzbereiche für Ω_{Λ} und Ω_{m} (Perlmutter et al., 1999).

dunkle Bereiche: 68% Konfidenz, außen: 90%

Moderne Kosmologie

THE UNIVERSITY OF WARWICK

Mikrowellen-Hintergrund, I

(Smoot et al., 1997, Fig. 1)

Penzias & Wilson (1965): "Measurement of Excess Antenna Temperature at 4080 Mc/s" ⇒ Kosmischer Mikrowellenhintergrund (Cosmic Microwave Background; CMBR):

CMB Spektrum konsistent mit Planck'schem Spektrum mit Temperatur $T_{\rm CMBR} = 2.728 \pm 0.004$ K.

 \implies Relikt des Big Bang.

Moderne Kosmologie

Entstehung der Hintergrundstrahlung: Frühes Universum war heiß und dicht —> Gleichgewicht zwischen Strahlung und Materie:

$$\gamma + \gamma \longleftrightarrow \mathbf{e}^- + \mathbf{e}^+$$

oder durch Comptonstreuung:

$$\mathbf{e}^- + \gamma \longrightarrow \mathbf{e}^- + \gamma$$

Fällt Temperatur unter Ionisationstemperatur für Wasserstoff,

 $\mathbf{H} + \gamma \not\leftrightarrow \mathbf{p} + \mathbf{e}^-$

dann Entkopplung von Strahlung und Materie, Photonen kühlen sich seither adiabatisch ab.

Entkopplung hängt ab vom Zustand des Universums am Ort der Entkopplung.

Mikrowellen-Hintergrund, III

COBE (1992): Erste Karte der 3K-Hintergrundstrahlung $T = 2.728 \,\mathrm{K}$

Moderne Kosmologie

THE UNIVERSITY OF

Mikrowellen-Hintergrund, IV

Überlagert: Dipol Anisotropie durch Bewegung des Sonnensystems $\Delta T/T \sim 10^{-4}$

Moderne Kosmologie

Mikrowellen-Hintergrund, V

Auf Niveau von $\Delta T/T \sim 10^{-5}$: Strukturen aufgrund von Form der Fläche der letzten Streuung.

Moderne Kosmologie

Strukturentstehung

courtesy Wayne Hu

Kopplung Strahlung und Materie \implies Hohe Dichte = hohe Photonendichte Photonen aus überdichten Regionen: Gravitationsrotverschiebung \implies beobachtbar (Sachs Wolfe Effect)

CMBR Fluktuationen = Gravitationspotential bei $z \sim 1100!$

Strukturentstehung

Beschreibe Temperaturvariation am Himmel mit Hilfe von Kugelflächenfunktionen

$$\frac{\Delta T}{T}(\theta,\phi) = \sum_{\ell,m} a_{\ell,m} Y_{\ell,m}(\theta,\phi)$$

Da rotationssymmetrisch (Isotropie)

 \implies Einfachere Darstellung mit Multipolkoeffizienten, C_{ℓ} :

$$\left\langle \frac{\Delta T}{T} \right\rangle = \frac{1}{4\pi} \sum_{\ell} \sum_{m=-\ell}^{+\ell} |a_{\ell,m}| P_{\ell}(\cos\theta) =: \frac{1}{4\pi} \sum_{\ell} (2\ell+1) \frac{C_{\ell}}{C_{\ell}} P_{\ell}(\cos\theta)$$

(gemittelt über alle ϕ).

Plot von C_{ℓ} als Funktion von ℓ : Power Spektrum

THE UNIVERSITY OF WARWICK

0–28

Was wird erwartet?

 ℓ klein: große Skalen (> Horizont beim Decoupling): flach ("Sachs-Wolfe Effekt")

 ℓ groß: kleine Skalen: Akustische Peaks: Modifikation wegen Strukturbildung:

- Materie fällt in Minimum des Gravitationspotentials ("Struktur")
- Druck baut sich auf
- Oszillationen
- Wechselwirkung Materie-Strahlung
- "Akustische Peaks"

Dämpfung mancher Oszillationen durch Compton-Streuung, Photonendiffusion (Silk-Effekt, nach J. Silk).

Strukturentstehung

Theorie: Position der Peaks hängt ab von

 $\Omega_{\rm b}$ $H_{\rm 0}$ $\Omega_{\rm 0}$

COBE: 1. akustischer Peak bei Skalen $< 7^{\circ}$.

Hu, Sugiyama, & Silk (1995)

THE UNIVERSITY OF

Moderne Kosmologie

BOOMERANG (1998 Dec/1999 Jan); courtesy BOOMERANG team

Strukturentstehung

1. akustischer Peak von BOOMERANG 1999 gefunden

... seither von vielen Experimenten bestätigt.

Courtesy M. Tegmark

Moderne Kosmologie

THE UNIVERSITY OF WARWICK

Wilkinson Microwave Anisotropy Probe (WMAP): Start 2001 Juni 30, erste Veröffentlichungen 2003 Februar

MAP990389

Vordergrundfeatures im Mikrowellenhimmel

WMAP, K-Band, $\lambda=$ 13 mm, $\nu=$ 22.8 GHz, $\theta=$ 0.83 $^{\circ}$ FWHM

WMAP, Q-Band, $\lambda=$ 7.3 mm, $\nu=$ 40.7 GHz, $\theta=$ 0.49 $^{\circ}$ FWHM

WMAP, W-Band, $\lambda=$ 3.2 mm, $\nu=$ 93.5 GHz, $\theta=$ 0.21 $^{\circ}$ FWHM

Strukturentstehung

WMAP best fit Parameter (Annahme: $\Omega = 1$, $H_0 =: h \cdot 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$):

 $h = 0.72 \pm 0.05$ $\Omega_{\rm m} h^2 = 0.14 \pm 0.02$ $\Omega_{\rm b} h^2 = 0.024 \pm 0.01$

(für h = 0.72: $\Omega_{\rm m} = 0.27$, $\Omega_{\rm b} = 0.05$)

Moderne Kosmologie

WARWICK

Zusammenfassung

Konfidenzbereiche für Ω_{Λ} und Ω_{m} .

dunkle Bereiche: 68% Konfidenz, außen: 90%

Region unten rechts: Universen sind älter als älteste schwere Elemente.

 $\Omega = 1.02 \pm 0.02$ $\Omega_{\rm m} = 0.14 \dots 0.3$ $H_0 = 72 \pm 5 \,{\rm km \, s^{-1} \, Mpc^{-1}}$

Zusammenfassung

THE UNIVERSITY OF