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The Hot Big Bang
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CMBR
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(Smoot, 1997, Fig. 1)

Penzias & Wilson (1965): “Measurement of

Excess Antenna Temperature at 4080 Mc/s”

=⇒ Cosmic Microwave Background Radiation

(CMBR):

The CMBR spectrum is fully consistent with

a pure Planckian with temperature

TCMBR = 2.728± 0.004 K.

Now recognized as relict of hot big bang.
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CMBR

Assumption: Early universe was hot and dense

=⇒ Equilibrium between matter and radiation.

Generation of radiation, e.g., in pair equilibrium,

γ + γ ←→ e− + e+ (6.1)

Equilibrium with electrons, e.g., via Compton

scattering:

e− + γ −→ e− + γ (6.2)

where the electrons linked to protons via

Coulomb interaction.

Once density low and temperature below

photoionization for Hydrogen,

H + γ ←→ p + e− (6.3)

Decoupling of radiation and matter =⇒ Adiabatic

cooling of photon field.

Proof for these assumptions, and lots of gory

details: this and the next few lectures!
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CMBR

Reminder: Planck formula for energy density of photons:

Bλ =
du

dλ
=

8πhc

λ5

1

exp(hc/kBTλ)− 1
(6.4)

(units: erg cm−3 Å
−1

), where

kB = 1.38× 10−16 erg K−1 (Boltzmann) (6.5)

h = 6.625× 10−27 erg s (Planck) (6.6)

For λ≫ hc/kBT : Rayleigh-Jeans formula:

Bλ ∼
8πkBT

λ4
(6.7)

(classical case, diverges for λ −→ 0, “Jeans catastrophe”).

Maximum emission given by Wien’s displacement law:

λmax = 0.201
hc

kBT
(6.8)

Total energy density by integration:

u =

∫ ∞

0
Bλ dλ =

8π5(kT )4

15h3c3
=

4σSB

c
T 4 = aradT

4 (6.9)

where

σSB = 5.670× 10−5 erg cm−3 K−4 Stefan-Boltzmann

(6.10)

arad = 7.566× 10−15 erg cm−2 K−4 s−1 rad. dens. const.

(6.11)
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Since the energy of a photon is Eγ = hν = hc/λ, the

number density of photons is

n =

∫ ∞

0

Bλ dλ

hc/λ
= 20.28 T 3 photons cm−3 (6.12)

Thus, for the CMBR:

nCMBR = 400 photons cm−3 (6.13)

Compare that to baryons: =⇒ critical density:

ρc =
3H2

8πG
= 1.88× 10−29h2 g cm−3

= 1.13× 10−5 h2 protons cm−3 (4.62)

since mp = 1.67× 10−24 g.

Therefore photons dominate the particle number:

nCMBR

nbaryons
=

3.54× 107

Ωh2
(6.14)

But, baryons dominate the energy density:

uCMBR

ubaryons
=

aradT
4

Ωρcc2
=

4.20× 10−13

1.69× 10−8Ωh2
=

1

40260Ωh2
(6.15)

That’s why we talk about the matter dominated universe.
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CMBR

Remember the scaling laws for the (energy)

density of matter and radiation:

ρm ∝ R−3 and ρr ∝ R−4 (4.67, 4.68)

Therefore,
ρr

ρm
∝ 1

R
(6.16)

=⇒Photons dominate for large z, i.e., early in the

universe!

Since 1 + z = R0/R (Eq. 4.43), matter-radiation

equality was at

1 + zeq = 40260 Ωh2 (6.17)

(for h = 0.75, 1 + zeq = 22650)

The above definition of zeq is not entirely correct: neutrino
background, which increases the background energy density, is
ignored (uν ∼ 68%uγ, see later).

Formally, matter-radiation equality defined from
nbaryons = nrel. particles, =⇒

1 + zeq = 23900 Ωh2 (6.18)

(for h = 0.75, 1 + zeq = 13440).
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CMBR

What happened to the temperature of the CMBR? Compare

CMBR spectrum today with earlier times.

Differential Energy density:

du = Bλdλ (6.19)

Cosmological redshift:

λ′

λ
=

R′

R
=

1

1 + z
= a (4.50)

where R(today) = 1.

Taking the expansion into account:

du′ =
du

a4
=

8πhc

a4λ5

dλ

exp(hc/kTλ)− 1
(6.20)

=
8πhc

a5λ5

adλ

exp(hc/kTλ)− 1
(6.21)

=
8πhc

λ′5
dλ′

exp(hca/kTλ′)− 1
(6.22)

= Bλ′(T/a) (6.23)

Therefore, the Planckian remains a Planckian, and the

temperature of the CMBR scales as

T (z) = (1 + z)T0 (6.24)

The early universe was hot =⇒ Hot Big Bang Model!
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Overview

a(t) t T [K] ρmatter Major Events

since BB [K] [g cm−3]

10−42 1030 Planck era, “begin of physics”

10−40...−30 1025 Inflation?

10−13 ∼ 10−5 s ∼ 1013 ∼ 109 generation of p-p−, and baryon

anti-baryon pairs from radiation

background

3× 10−9 1 min 1010 0.03 generation of e+-e− pairs out of

radiation background

10−9 10 min 3× 109 10−3 nucleosynthesis

10−4. . . 10−3 106...7 yr 103...4 10−21...−18 End of radiation dominated epoch

7× 10−4 107 yr 4000 10−20 Hydrogen recombines, decoupling of

matter and radiation

1 15× 109 yr 3 10−30 now
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Thermodynamics, I

Density in early universe is very high.

physical processes (e.g., photon-photon pair

creation, electron-positron annihilation etc.) all

have reaction rates

Γ ∝ nσv (6.25)

where

n: number density (cm−3)

σ: interaction cross-section (cm2)

v: velocity (cm s−1)

thermodynamic equilibrium reached if reaction

rate much faster than “changes” in the system,

Γ≫ H (6.26)

If thermodynamic equilibrium holds, then can

assume evolution of universe as sequence of

states of local thermodynamic equilibrium, and

use standard thermodynamics.

Before looking at real universe, first need to

derive certain useful formulae from relativistic

thermodynamics.



6–10

UWarwick

Big Bang Thermodynamics 2

Thermodynamics, II

For ideal gases, thermodynamics shows that

number density f(p) dp of particles with

momentum in [p, p + dp] is given by

f(p) =
1

exp ((E − µ)/kBT ) +a
(6.27)

where

a =






+1 : Fermions (spin=1/2, 3/2,. . . )

−1 : Bosons (spin=1, 2,. . . )

0 : Maxwell-Boltzmann

and where the energy needs to take the

rest-mass into account:

E2 = |p|2 c2 + m2c4 (6.28)

µ is called the “chemical potential”. It is preserved in chemical
equilibrium:

i + j ↔ k + l =⇒ µi + µj = µk + µl (6.29)

photons: multi-photon processes exist =⇒ µγ = 0.
particles in thermal equilibrium: µ = 0 as well because of the

first law of thermodynamics,

dE = T dS − P dV + µ dN (6.30)

and in equilibrium system stationary wrt changes in particle
number N .
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Thermodynamics, III

In addition to number density: different particles

have internal degrees of freedom, abbreviated

with g.

Examples:

photons: two polarization states =⇒ g = 2

neutrinos: one polarization state =⇒ g = 1

electrons, positrons: spin=1/2 =⇒ g = 2

Knowing g and f (p), it is possible to compute interesting

quantities:

particle number density:

n =
g

(2π~)3

∫
f (p) d3p (6.31)

energy density:

u = ρc2 =
g

(2π~)3

∫
E(p) f (p) d3p (6.32)

pressure: from kinetic theory we know

P = n〈pv〉/3 = n〈p2c2/E〉/3 (6.33)

such that

P =
g

(2π~)3

∫
p2c2

3E
f (p) d3p (6.34)
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Thermodynamics, IV

Generally, we are interested in knowing n, u, and

P in two limiting cases:

1. the ultra-relativistic limit, where kBT ≫ mc2,

i.e., kinetic energy dominates the rest-mass

2. the non-relativistic limit, where kBT ≪ mc2

Transitions between these limits (i.e., what

happens during “cooling”) are usually much more

complicated =⇒ ignore. . .
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To derive the number density, the energy density, and the equation of state, note that Eq. (6.28) shows

E =
√

p2c2 + m2c4 (6.28)

such that
p =

√
E2 −m2c4/c (6.35)

Therefore
dE

dp
=

pc2

√
p2c2 + m2c4

(6.36)

from which it follows that
E dE = pc2 dp (6.37)

Thus the following holds

+∞y

−∞

d3p =

∫
∞

0
4πp2 dp =

∫
∞

mc2

4π

c3

(
E2 −m2c4

)1/2
E dE (6.38)

Going to a system of units where
c = kB = ~ = 1 (6.39)

to save me some typing, substitute these equations into Eqs. (6.31)–(6.34) to find

n =
g

2π2

∫
∞

m

(
E2 −m2

)1/2
E dE

exp ((E − µ)/T )± 1
(6.40)

ρ =
g

2π2

∫
∞

m

(
E2 −m2

)1/2
E2 dE

exp ((E − µ)/T )± 1
(6.41)

P =
g

6π2

∫
∞

m

(
E2 −m2

)3/2
dE

exp ((E − µ)/T )± 1
(6.42)

which can in some limiting cases be expressed in a closed form (Kolb & Turner, 1990, eq. 3.52 ff.) (see
following viewgraphs).
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Thermodynamics, V

In the ultra-relativistic limit, kBT ≫ mc2, and

assuming µ = 0,

n =

{
ζ(3)
π2 g

(
kBT
~c

)3
Bosons

3
4

ζ(3)
π2 g

(
kBT
~c

)3
Fermions

(6.43)

u =

{
π2

30 g kBT
(

kBT
~c

)3
Bosons

7
8

π2

30 g kBT
(

kBT
~c

)3
Fermions

(6.44)

P = ρc2/3 = u/3 (6.45)

where ζ(3) = 1.202 . . ., and ζ(s) is Riemann’s

zeta-function (see handout, Eq. 6.53).

Eq. (6.45) is a simple result of the fact that in the relativistic limit,
E ∼ pc. Inserting this and v = c into Eq. (6.33) gives the desired
result.

As expected, T 4 proportionality well known from Stefan Boltzmann
law!
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Obtaining the previous formulae is an exercise in special functions. For example, the T ≫ m, T ≫ µ
case for ρ for Bosons (Eq. 6.44) is obtained as follows (setting c = kB = ~ = 1):

ρBoson =
g

2π2

∫
∞

m

(
E2 −m2

)1/2
E2 dE

exp ((E − µ)/T )± 1
(6.46)

because of T ≫ µ

≈ g

2π2

∫
∞

m

(
E2 −m2

)1/2
E2 dE

exp(E/T )± 1
(6.47)

for Bosons, choose −1, and substitute x = E/T :

=
g

2π2

∫
∞

m/T

(
x2T 2 −m2

)1/2
x2T 3 dx

exp(x)− 1
(6.48)

Since T ≫ m,

≈ g

2π2

∫
∞

0

x3T 4 dx

exp(x)− 1
(6.49)

=
gT 4

2π2

∫
∞

0

x3 dx

exp(x)− 1
(6.50)

=
gT 4

2π2
· 6ζ(4) (6.51)

=
π2

30
gT 4 (6.52)

where ζ(s) is Riemann’s zeta-function, which is defined by (Abramowitz & Stegun, 1964)

ζ(s) =
1

Γ(s)

∫
∞

0

xs−1

exp(x)− 1
dx for Re s > 1 (6.53)

where Γ(x) is the Gamma-function. Note that ζ(4) = π4/90.

For Fermions, everything is the same except for that we now have to choose the + sign. The equivalent
of Eq. (6.50) is then

ρFermi =
gT 4

2π2

∫
∞

0

x3 dx

exp(x) + 1
(6.54)

Now we can make use of formula 3.411.3 of Gradstein & Ryshik (1981),

∫
∞

0

xν−1 dx

exp(µx) + 1
=

1

µν
(1− 21−ν)Γ(ν)ζ(ν) for Re µ, ν > 1 (6.55)

to see where the additional factor of 7/8 in Eq. (6.44) comes from.
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Thermodynamics, VI

In the non-relativistic limit: kBT ≪ mc2

=⇒ can ignore the ±1 term in the denominator

=⇒ Same formulae for Bosons and Fermions!

n =
2g

(2π~)3
(2πmkBT )3/2e−mc2/kBT (6.56)

u = nmc2 (6.57)

P = nkBT (6.58)

Therefore:

• density dominated by rest-mass

(ρ = u/c2 = mn)

• P ≪ ρc2/3, i.e., much smaller than for

relativistic particles.

• Particle pressure only important if particles are

relativistic.

Obviously, relativistic particles with m = 0 (or very close to 0) will
never get nonrelativistic. Still, they can “decouple” from the rest of
the universe when the interaction rates go to 0.
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Equation of State

Pressure of ultra-relativistic particles≫ Pressure

of nonrelativistic particles =⇒ Nonrelativistic

particles unimportant for equation of state.

For relativistic particles:

uboson =
π2

30
g kBT

(
kBT

~c

)3

(6.44)

ufermion =
7

8
uboson (6.44)

=⇒ Total energy density for mixture of particles:

u = g∗ ·
π2

30
kBT

(
kBT

~c

)3

(6.59)

where the effective degeneracy factor

g∗ =
∑

bosons

gB

(
TB

T

)4

+
7

8

∑

fermions

gF

(
TF

T

)4

(6.60)

g∗ counts total number of internal degrees of freedom of all
relativistic bosonic and fermionic species, i.e., all relativistic
particles which are in thermodynamic equilibrium

Pressure obtained from Eq. (6.59) via P = u/3.
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Early Expansion, I

Knowing the equation of state (EOS), we can now

use Friedmann equations to determine the early

evolution of the universe.

Friedmann:

Ṙ2 =
8πG

3
ρR2 − kc2 (4.59)

or, dividing by R2

Ṙ2

R2
= H(t)2 =

8πG

3
ρ− kc2

R2
(4.60)

But: Early universe dominated by relativistic

particles

=⇒ ρ ∝ R−4

=⇒ Density-term dominates

=⇒ can set k = 0.

Early universe is asymptotically flat!

This will prove to be one of the most crucial problems of modern
cosmology. . .
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Early Expansion, II

To obtain evolution, insert EOS (Eq. 6.59) into Eq. (4.60):

H(t)2 =
8πG

3
g∗

π2

30

(kBT )4

(~c)3
(6.61)

=
4π3G

45(~c)3
g∗ (kBT )4 (6.62)

such that

H(t) =

(
4π3G

45(~c)3

)1/2

g1/2
∗ (kBT )2 (6.63)

On the other hand, since ρ ∝ R−4 (relativistic background),

ρ = ρ0

(
R0

R

)4

(6.64)

Friedmann:

dR

dt
=

√
8πGρ0

3

R2
0

R
(6.65)

Introducing the dimensionless scale factor, a = R/R0

(Eq. 4.30),

da

dt
=

√
8πGρ0

3

1

a
=: ξa−1 (6.66)
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Early Expansion, III

Separation of variables gives
∫ a(t)

0
a da =

∫ t

0
ξ dt (6.67)

such that finally

a(t) = ξ1/2 · t1/2 (6.68)

Therefore, the Hubble constant is

H(t) =
ȧ

a
=

1

2t
(6.69)

Equating Eqs. (6.63) and (6.69) gives the time-temperature

relationship:

t =

(
45(~c)3

16π3G

)1/2
1

g
1/2
∗

1

(kBT )2
(6.70)

Inserting all constants and converting to more useful units

gives

t =
2.4 sec

g
1/2
∗
·
(

kBT

1 MeV

)−2

(6.71)

. . . one of the most useful equations for the early universe.
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Elementary Particles, I

Precise behavior of universe depends on g∗
=⇒ Strong dependency on elementary particle physics.

Generally, particles present when energy in other particles

allows generation of particle–antiparticle pairs, i.e., when

kBT & mc2 (threshold temperature)

Current particle physics provides following picture (Olive,

1999, Tab. 1):

Temp. New Particles 4g∗(T )

kBT < mec
2 γ’s and ν ’s 29

mec
2 < kBT < mµ e± 43

mµc
2 < kBT < mπ µ± 57

mπc
2 < kBT < kBTc π’s 69

kBTc < kBT < mstrangec
2 −π’s+u, ū, d, d̄, gluons 205

msc
2 < kBT < mcharmc2 s, s̄ 247

mcc
2 < kBT < mτc

2 c, c̄ 289

mτc
2 < kBT < mbottomc2 τ± 303

mbc
2 < kBT < mW,Zc

2 b, b̄ 345

mW,Zc
2 < kBT < mtopc

2 W±, Z 381

mtc
2 < kBT < mHiggsc

2 t, t̄ 423

mHc2 < kBT H0 427

Tc: energy of confinement-deconfinement for transitions quarks
=⇒ hadrons, somewhere between 150 MeV and 400 MeV.

Example: photons (2 polarization states, i.e., g = 2) and three
species of neutrinos (g = 1, but with distinguishable anti-particles)
=⇒ g∗ = 2 + (7/8) · 2 · 3 = 58/8 = 29/4.
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Elementary Particles, II

0

20

40

60

80

100

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Log(T/MeV)

g
*

T_c=400 MeV

T_c=150 MeV

(Olive, 1999, Fig. 1)

Will now consider times when only Neutrinos and Electron/Positrons

present (after baryogenesis, see next lecture for that).
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Interlude

Previous (abstract) formulae allow to estimate

quantities like

1. The existence and energy of primordial

neutrinos,

2. The formation of neutrons,

3. The formation of heavier elements.

Detailed computations require solving nonlinear

differential equations =⇒ difficult, only

numerically possible.

Essentially, need to self-consistently solve Boltzmann equation in
expanding universe for evolution of phase space density with time,
using the correct QCD/QED reaction rates =⇒ too complicated (at
least for me. . . ).

Will use approximate analytical way here, which

gives surprisingly exact answers.
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Neutrinos, I

Neutrino equilibrium caused by weak interactions

such as

e−+ e+←→ ν + ν̄

e−+ ν ←→ e−+ ν
(6.72)

etc.

Reaction rate for these processes:

Γ = n 〈σv〉 (6.73)

where the thermally averaged interaction

cross-section is

〈σv〉 ≈
〈

α2p

m4
W

· p
〉
∼ 10−2(kBT )2

m4
W

(6.74)

mW: mass of W-boson (exchange particle of weak interaction),
α ≈ 1/137: fine structure constant.

But in the ultra-relativistic limit,

n ∝ T 3 (6.43)

such that

Γweak ∝
α2T 5

m4
W

(6.75)
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Neutrinos, II

Because of Eqs. (6.69) and (6.70), the

temperature dependence of the Hubble constant

is

H(T ) = 1.66g
1/2
∗ ·

T 2

mP
(6.76)

where mP is the Planck mass,

mPc
2 = 1.22× 1019 GeV (see later, Eq. 6.130).

Neutrino equilibrium possible as long as

Γweak > H , i.e., (inserting exact numbers)

kBTdec &

(
500 c6 m4

W

mP

)1/3

∼ 1 MeV (6.77)

Neutrinos decouple ∼ 1 s after the big bang.

This follows from Eq. (6.71), remembering that for this phase,
g∗ ∼ 10.

Since decoupling, primordial neutrinos just follow

expansion of universe, virtually no interaction with

“us” anymore.
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Entropy, I

The entropy of particles is defined through

S =
E + PV

T
(6.78)

Important for cosmology: relativistic limit.

Define entropy density,

s =
S

V
=

E/V + P

T
=

u + P

T
≈ 4

3

u

T
(6.79)

(last step for relativistic limit; Eq. 6.45)

Inserting Eq. (6.44) gives

s =
7

8

2π2

45
gkB

(
kBT

~c

)3

=
7

6

2π4

45 ζ(3)
kB n

(6.80)

(violet: only for Fermions).

=⇒ In the relativistic limit

s

kB
=

{
3.602n Bosons

4.202n Fermions
(6.81)

Important for later:

Since s ∝ n for backgrounds,

η = nCMBR/nbaryons is often called “entropy

per baryon”.
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Entropy, II

For a mixture of backgrounds, Eq. (6.80) gives

s

kB
= g∗,S ·

2π2

45

(
kBT

~c

)3

(6.82)

where g∗,S is the analogue to g∗ (Eq. 6.60),

g∗,S =
∑

bosons

gB

(
TB

T

)3

+
7

8

∑

fermions

gF

(
TF

T

)3

(6.83)

Note that if the species are not at the same temperature, g∗ 6= g∗,S.

Entropy per mass today:

S

M
=

1016

Ωh2
erg K−1 g−1 (6.84)

while the entropy gain of heating water at 300 K

by 1 K is ∼ 1.4× 105 erg K−1 g−1.

=⇒ “Human attempts to obey 2nd law . . . are swamped by

. . . microwave background” (Peacock, 1999, p. 277).

=⇒S = const. for universe to very good approximation.

=⇒Universe expansion is adiabatic!
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Reheating

After decoupling of neutrinos, neutrino distribution just gets

redshifted (similar to CMBR, Eq. 6.24):

Tν

Tdec
=

Rdec

R(t)
=⇒ Tν ∝ R−1 (6.85)

On the other hand, the temperature of the universe is

T ∝ g
1/3
∗,S R−1 (6.86)

This follows from S/V ∝ T 3 (Eq. 6.82), V ∝ R3, and S = const.
(adiabatic expansion of the universe).

=⇒ as long as g∗,S = const. we have Tν = T

=⇒ Immediately after decoupling, neutrino background

appears as if it is still in equilibrium.

However: Temperature for neutrino decoupling ∼ 2mec
2

But, for kTBB < 2 mec
2, pair creation,

γ + γ ←→ e− + e+ (6.87)

kinematically impossible

=⇒ Shortly after neutrino decoupling: e± annihilation

=⇒ g∗,S changes!

=⇒Would expect TCMBR 6= Tν.
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Reheating

Difference in g∗,S:

• before annihilation:

e−, e+, γ =⇒ g∗,S = 2 + 2 · 2 · (7/8)= 11/2.

• after annihilation:

γ =⇒ g∗,S = 2

But: total entropy for particles in equilibrium

conserved (“expansion is adiabatic”):

g∗,S(Tbefore) · T 3
before = g∗,S(Tafter) · T 3

after (6.88)

such that

Tafter =
(11

4

)1/3

Tbefore ∼ 1.4 · Tbefore (6.89)

Since Tafter > Tbefore: “reheating”.
Note that in reality the annihilation is not instantaneous and T
decreases (albeit less rapidly) during “reheating”. . .

=⇒Since neutrino-background does not “see”

annihilation

=⇒ just continues to cool

=⇒ current temperature of neutrinos is

Tν =
( 4

11

)1/3

TCMBR ∼ 1.95 K (6.90)
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History

After reheating: universe consists of p, n, γ (and e− to

preserve charge neutrality)

=⇒ Ingredients for Big Bang Nucleosynthesis (BBN).

Historical perspective:

Cross section to make Deuterium:

〈σv〉(p + n→ D + γ) ∼ 5× 10−20 cm3 s−1 (6.91)

Furthermore, need temperatures of TBBN ∼ 100 keV, i.e.,

tBBN ∼ 200 s (Eq. 6.71).

This implies density

n ∼ 1

〈σv〉 · tBBN
∼ 1017 cm−3 (6.92)

Today: Baryon density nB ∼ 10−7 cm−3

Since n ∝ R−3, =⇒

T (today) =

(
nB

n

)1/3

· TBBN ∼ 10 K (6.93)

pretty close to the truth. . .

The above discussion was first used by Gamov and coworkers in
1948, and was the first prediction of the cosmic microwave
background radiation!

Observations:

BBN required by observations, since no other production

region for Deuterium known, and since He-abundance

∼ 25% by mass everywhere.
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Proton/Neutron

Initial conditions: Set by Proton-Neutron-Ratio.

For t≪ 1 s, equilibrium via weak interactions:

n ←→ p + e− + ν̄e

νe + n ←→ p + e−

e+ + n ←→ p + ν̄e

(6.94)

Reactions fast as long as particles relativistic.

But, once T ∼ 1 MeV, n, p non-relativistic

=⇒ Boltzmann statistics applies (or us Eq. (6.56)):
nn

np
= e−∆mc2/kBT = e−1.3 MeV/kBT (6.95)

=⇒Suppression of n with respect to p because of larger

mass (mnc
2 = 939.57 MeV, mpc

2 = 938.27 MeV)

Abundance freezes out when Γ > H , where reaction rate

Γ(νe + n↔ p + e−) ∼ 2.1
(

T

1 MeV

)5

s−1 (6.96)

Neutron abundance freezes out at kBT ∼ 0.8 MeV

(t = 1.7 s), such that nn/np = 0.2

After that: Neutron decay (τn = 886.7± 1.2 s).

=⇒Nucleosynthesis has to be over before neutrons are

gone!



6–30

UWarwick

Nucleosynthesis: Theory 3

Deuterium

The next step in nucleosynthesis is formation of

deuterium (binding energy EB = 2.225 MeV, i.e.,

1.7(mn−mp)c
2:

p + n ←→ D + γ (6.97)

Note: Both reactions possible:

fusion and photodisintegration:

Γfusion = nBσv (6.98)

Γphoto = nγσve−EB/kBT (6.99)

At first: photodisintegration dominates

(η−1 = nγ/nB ∼ 1010).

Build up of D only possible once Γfusion > Γphoto,

i.e., when
nγ

nB
e−EB/kBT ∼ 1 (6.100)

Inserting numbers shows that

Deuterium production starts at

kBT ∼ 100 keV, t ∼ 100 s.
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Heavier Elements, I

Once deuterium present:

nucleosynthesis of lighter elements:

D + D −→ T + p

D + n −→ T + γ

D + p −→ 3He + γ

D + D −→ 3He + n
3He + n −→ T + p

(6.101)

production of 4He:

D + D −→ 4He + γ

D + 3He −→ 4He + p

T + D −→ 4He + n
3He + 3He −→ 4He + 2p

T + p −→ 4He + γ
3He + n −→ 4He + γ

(6.102)

Element gap at A = 5 can be overcome to produce Lithium:

3He + 4He −→ 7Be + γ
7Be −→ 7Li + e+ + νe

T + 4He −→ 7Li + e+ + νe

(6.103)

Gap at A = 8 prohibits production of heavier isotopes.



6–32

UWarwick

Nucleosynthesis: Theory 5

Heavier Elements, II

Major product of BBN: 4He.
Mass fraction of 4He assuming all neutrons incorporated

into 4He

=⇒ number density of H=number of remaining protons, i.e.,

mass fraction

X =
np − nn

np + nn
(6.104)

and

Y = 1− np − nn

np + nn
= 2

(
1 +

np

nn

)−1

(6.105)

At kBT = 0.8 MeV, because of neutron decay, nn/np = 1/7,

therefore

BBN predicts primordial He-abundance of Y = 0.25.

1. Generally, BBN function of entropy per baryon, η, i.e., of

ΩB:

ΩB = 3.67× 107 · η (6.106)

(since η, Ω determine expansion behavior) =⇒ Perform

computations as function of η!

2. Since Y set by np/nn =⇒ Relatively independent on η

(except for extreme values).



(Olive, 1999, Fig. 3)

Detailed Computations: Solution of rate-equations in

expanding universe.

Recent computations: Thomas et al. (1993).

Recent reviews: Olive (1999), Tytler et al. (2000).
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Detailed Computations, II
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Build-up of abundances as function of time for η = 5.1× 10−10 (Burles, Nollett & Turner, 1999,
Fig. 3) [remember: η = nCMBR/nbaryons]
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Detailed Computations, III

He abundance as function of η (Thomas et al., 1993, Fig. 3a).
4He mainly dependent on
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Detailed Computations, IV

Light-element abundances as function of η (Olive, 1999, Fig. 4)
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Detailed Computations, V

Intermediate mass abundances as function of η (Olive, 1999,
Fig. 5).
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Remarkable Things

Note the following coincidences:

1. Freeze out of nucleons simultaneous to freeze

out of neutrinos.

2. . . . and parallel to electron-positron

annihilation.

3. Expansion slow enough that neutrons can be

bound to nuclei.

=⇒Long chain of coincidences makes our

current universe possible!
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(Burles, Nollett & Turner, 1999, Fig. 4)

4He produced in stars =⇒ extrapolate to zero metallicity in

systems of low metallicity (i.e., minimize stellar processing).

Best determination from He II−→He I recombination lines in

H II regions (metallicity ∼ 20% solar).

Result: Linear correlation He vs. O

=⇒ extrapolate to zero oxygen to obtain primordial

abundances. Result: Y = 0.234± 0.005 (Olive, 1999).
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Deuterium

(Quasar 1937−1009; top: 3 m Lick, bottom: Keck; Burles, Nollett &
Turner, 1999, Fig. 2)

Stars destroy D =⇒ use as non-processed material as possible!
Lyα forest (absorption of quasar light by intervening material)
=⇒ Structure caused by primordial deuterium, analysis of
spectrum gives D/H = (3.3± 0.3)× 10−5 (by number). Currently
best measurement of primordial D-abundance.
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Lithium
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(Burles, Nollett & Turner, 1999, Fig. 5)

Stars with very low metallicity (old halo stars) show same

Lithium abundance, 7Li/H = 1.6× 10−10 =⇒ close to

primordial.

Cannot use galactic objects since Li also produced by spallation of
heavier nuclei by cosmic rays (10× primordial produced this way).

Lower temperature stars: outer convection zone

=⇒ Li burning destroys Li.
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Population III

(after Christlieb et al., 2002, Fig. 1)

Earliest stars should only have H, He, i.e., Z = 0

=⇒ would enable direct measure of primordial abundances.

Lowest metallicity known: HE0107−5240, with

Fe-abundance of 1/200000 solar

=⇒ “population III star”, formed either from primordial gas cloud
(and got some elements later through accretion from ISM), or from
debris from type II SN explosion.
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Neutrino Species

(Burles, Nollett & Turner, 1999, Fig. 7)

Number of neutrino species enters Ω =⇒ Models

for BBN constrain number of neutrino species to

Nν = 3.
For a long time, BBN provided harder constraints on Nν than
laboratory experiments.
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Summary

(Burles, Nollett & Turner, 1999, Fig. 1)

BBN strongly constrains ΩBaryons.
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Summary

Summary: History of the universe after its first

0.01 s (after Islam, 1992, Ch. 7, see also

Weinberg, The first three minutes).

t = 0.01 s T = 1011 K ρ ∼ 4× 1011 g cm−3

Main constitutents: γ, ν, ν̄, e−-e+ pairs.

No nuclei (instable). n and p in thermal balance.

t = 0.1 s T = 3× 1010 K ρ ∼ 3× 107 g cm−3

Main constitutents: γ, ν, ν̄, e−-e+ pairs. No

nuclei.

n + ν ↔ p + e−: mass difference becomes

important, 40% n, 60% p (by mass).

t = 1.1 s T = 1010 K ρ ∼ 105 g cm−3

Neutrinos decouple, e−-e+ pairs start to

annihilate. No nuclei.

25% n, 75% p
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Summary

t = 13 s T = 3× 109 K ρ ∼ 105 g cm−3

Reheating of photons, pairs annihilate, ν fully

decoupled, deuterium still cannot form.

17% n, 83% p

t = 3 min T = 109 K ρ ∼ 105 g cm−3

Pairs are gone, neutron decay becomes

important, start of nucleosynthesis

14% n, 86% p

t = 35 min T = 3× 108 K ρ ∼ 0.1 g cm−3

game over

Next important event: t ∼ 300000 years:

Interaction CMB/matter stops (“last scattering”,

recombination).

Before we look at this, we look at

the first 0.01 s: the very early universe
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Inflation

So far, have seen that BB works remarkably well in

explaining the observed universe.

There are, however, quite big problems with the classical BB

theories:

Horizon problem: CMB looks too isotropic =⇒Why?

Flatness problem: Density close to BB was very close to

Ω = 1 (deviation ∼ 10−16 during nucleosynthesis) =⇒
Why?

Hidden relics problem: There are no observed magnetic

monopoles, although predicted by GUT, neither

gravitinos and other exotic particles =⇒Why?

Vacuum energy problem: Energy density of vacuum is

10120 times smaller than predicted =⇒Why?

Expansion problem: The universe expands =⇒Why?

Baryogenesis: There is virtually no antimatter in the

universe =⇒Why?

Structure formation: Standard BB theory produces no

explanation for lumpiness of universe.

Inflation attempts to answer all of these questions.

Recent Book: Liddle & Lyth (2000)
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Horizon problem, I

(Bennett et al., 2003, temperature difference ±200 µK)

COBE and WMAP: Temperature fluctuations in CMB on 10◦

scales:
∆TCMB

TCMB
∼ 2× 10−5 (6.107)

This is too small: Size of observable universe at given

epoch (“particle horizon”) is given by coordinate distance

photons traveled since big bang (Eq. 4.46):

dh = R0 · rH(t) =

∫ t

0

c dt

a(t)
(6.108)

For a matter dominated universe with Ω = 1,

a(t) =

(
3H0

2
t

)2/3

(4.77)

such that for t = t0 = 2/(3H0) (Eq. 4.78):

dh(t0) =
3c

(3H0/2)2/3
t

1/3
0 =

2c

H0
(6.109)
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Horizon problem, II

For matter dominated universes at redshift z,

Eq. (6.109) works out to be (Peacock, 1999,

eq. 11.2):

dh ≈
6000√

Ωz
h−1 Mpc (6.110)

CMB decoupled from matter at z ∼ 1000 (see

later), such that then dh ∼ 200 Mpc, while today

dh ∼ 6000 Mpc =⇒ current observable volume

∼ 30000× larger!
Note: we use a =⇒ all scales refer to what they are now, not what
they were when the photons started!

Horizon problem: Why were causally

disconnected areas on the sky so similar

when CMB last interacted with matter?

Note that the horizon distance is larger than Hubble length:

dh =
2c

H0
>

2c

3H0
= c · t0 = dH (6.111)

Reason for this is that universe expanded while photons traveled
towards us =⇒ Current observable volume larger than volume
expected in a non-expanding universe.
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Horizon problem, III

courtesy E. Wright.
Expansion of horizon in an expanding universe.
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Flatness problem, I

Current observations of density of universe

roughly imply

0.01 . Ω . 2 i.e., Ω ∼ 1 (6.112)

(will be better constrained later).

Ω ∼ 1 imposes very strict conditions on initial

conditions of universe:

The Friedmann equation (e.g., Eq. 4.61) can be

written in terms of Ω:

Ω− 1 =
k

a2H2
=

ck

ȧ2
(6.113)

For a nearly flat, matter dominated universe,

a(t) ∝ t2/3, such that

Ω(t)− 1

Ω(t0)− 1
=

(
t

t0

)2/3

(6.114)

while for the radiation dominated universe with

a(t) ∝ t,
Ω(t)− 1

Ω(t0)− 1
=

t

t0
(6.115)
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Flatness problem, II

Today: t0 = 3.1× 1017 h−1 s, i.e., observed

flatness predicts for era of nucleosynthesis

(t = 1 s):

Ω(1 s)− 1

Ω(t0)− 1
∼ 10−12 . . . 10−16 (6.116)

i.e., very close to unity.

Flatness problem: It is very unlikely that Ω

was so close to unity at the beginning

without a physical reason.

Had Ω been different from 1, the universe would immediately have
been collapsed or expanded too fast =⇒ Anthropocentric point of
view requires Ω = 1.
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Hidden relics problem

Modern theories of particle physics predict the

following particles to exist:

Gravitinos: From supergravity, spin 3/2 particle

with mc2 ∼ 100 GeV, if it exists, then

nucleosynthesis would not work if BB started

at kT > 109 GeV.

Moduli: Spin-0 particles from superstring theory,

contents of vacuum at high energies.

Magnetic Monopoles: Predicted in grand

unifying theories, but not observed.

Hidden relics problem: If there was a normal

big bang, then strange particles should exist,

which are not observed today.
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Vacuum, Λ, I

What is vacuum? Not empty space but rather

ground state of some physical theory.
Reviews: Carroll, Press & Turner (1992), Carroll (2001).

Since ground state should be same in all

coordinate systems =⇒ Vacuum is Lorentz

invariant.

vac
P

V

(after Peacock, 1999, Fig. 1.3)

Equation of state (Zeldovich, 1968):

Pvac = −ρvacc
2 (6.117)

This follows directly from 1st law of thermodynamics: ρvac

should be constant if compressed or expanded, which is

true only for this type of equation of state:

dE = dU + P dV = ρvacc
2 dV − ρvacc

2 dV = 0 (6.118)

An alternative derivation goes via the stress-energy momentum
tensor of a perfect fluid, see Carroll, Press & Turner (1992).
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Vacuum, Λ, II

ρvac defines Einstein’s cosmological constant

Λ = −8πGρvac

c4
(6.119)

Adding ρvac to the Friedmann equations allows to

define

ΩΛ =
ρvac

ρcrit
=

ρvac

3H2/8πG
=

c4Λ

3H2
(6.120)

Classical physics: Particles have energy

E = T + V (6.121)

and force is F = −∇V , i.e., can add constant

without changing equation of motion

=⇒ In classical physics, we are able to define

ρvac = 0!

Quantum mechanics is (as usual) more difficult.
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Vacuum, Λ, III

Vacuum in quantum mechanics:

-4 -2 0 2 4
x (mω/(h/2π))1/2

E/(mω(h/2π)), Ψ

1

2

3

n=0

n=1

n=2

Simplest case: harmonic oscillator:

V (x) =
1

2
mω2x2 i.e., V (0) = 0 (6.122)

However, particles can only have energies

En =
1

2
~ω + n~ω where n ∈ N (6.123)

=⇒ Vacuum state has zero point energy

E0 =
1

2
~ω (6.124)

Simple consequence of uncertainty principle!

In QM, could normalize V (x) such that E0 = 0, important here is
that vacuum state energy differs from classical expectation!
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Vacuum, Λ, IV

Quantum field theory: Field as collection of harmonic

oscillators of all frequencies. Simplest case: spinless boson

(“scalar field”, φ).

=⇒ Vacuum energy sum of all contributing modes:

E0 =
∑

j

1

2
~ωj (6.125)

Compute sum by putting system in box with volume L3, and

then L −→∞.

Box =⇒ periodic boundary conditions:

λi = L/ni ⇐⇒ ki = 2π/λi = 2πni/L (6.126)

for ni ∈ N =⇒ dkiL/2π discrete wavenumbers in

[ki, ki + dki], such that

E0 =
1

2
~L3

∫
ωk

(2π)3
d3k where ω2

k = k2 + m2/~
2

(6.127)

Imposing cutoff kmax:

ρvacc
2 = lim

L→∞
E0

L3
= ~

k4
max

16π3
(6.128)

Divergent for kmax −→∞ (“ultraviolet divergence”).

Not worrisome: Expect QM to break down at large energies

anyway (ignored collective effects, etc.).



6–58

UWarwick

Inflation: Problems 12

Vacuum, Λ, V

When does classical quantum mechanics break

down?

Estimate: Formation of “Quantum black holes”:

λde Broglie =
2π~

mc
<

2Gm

c2
= rSchwarzschild (6.129)

=⇒ Defines Planck mass:

mP =

√
~c

G
=̂ 1.22× 1019 GeV (6.130)

Corresponding length scale: Planck length:

lP =
~

mP
=

√
~G

c3
∼ 10−37 cm (6.131)

. . . and time scale (Planck time):

tP =
lP
c

=

√
~G

c5
∼ 10−47 s (6.132)

=⇒Limits of current physics until successful theory of

quantum gravity.

The system of units based on lP, mP, tP is called the system of
Planck units.
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Vacuum, Λ, VI

To compute QFT vacuum energy density, choose

kmax = mPc
2/~ (6.133)

Inserting into Eq. (6.128) gives

ρvacc
2 = 1074 GeV ~

−3 or ρvac ∼ 1092 g cm−3 (6.134)

a tad bit on the high side (∼ 10120 higher than observed).

Inserting ρvac in Friedmann equation:

T < 3 K at t = 10−41 s after Big Bang.

To obtain current universe, require kmax = 10−2 eV =⇒ Less

than binding energy of Hydrogen, where QM definitively

works!

Vacuum energy problem: Contributions from virtual

fluctuations of all particles must cancel to very high

precision to produce observable universe.

Casimir effect: force between conducting plates of area A and
distance a in vacuum is FCasimir = ~cAπ2/(240a4) =⇒ caused by
incomplete cancellation of quantum fluctuations. Confirmed by
Lamoreaux in 1996 at 5% level.
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Expansion problem

Cosmological Expansion:

GR predicts expansion of the universe, but initial

conditions for expansion are not set!

Classical cosmology: “The unverse expands

since it has expanded in the past”

=⇒ Hardly satisfying. . .

Cosmological Expansion Problem: What is

the physical mechanism responsible for the

expansion of the universe?

To put it more bluntly:

“The Big Bang model explains nothing about the origin of

the universe as we now perceive it, because all the most

important features are ‘predestined’ by virtue of being built

into the assumed initial conditions near to t = 0.” (Peacock,

1999, p. 324)
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Baryogenesis

Quantitatively: Today:

Np

Nγ
∼ 10−9 but

Np̄

Nγ
∼ 0 (6.135)

Assuming isotropy and homogeneity, this is

puzzling: Violation of Copernican principle!

Antimatter problem: There are more

particles than antiparticles in the observable

universe.

Sakharov (1968): Asymmetry implies three fundamental

properties for theories of particle physics:

1. CP violation (particles and antiparticles must behave

differently in reactions, observed, e.g., in the K0 meson),

2. Baryon number violating processes (more baryons than

antibaryons =⇒ Prediction by GUT),

3. Deviation from thermal equilibrium in early universe

(CPT theorem: mX = mX̄ =⇒ same number of particles

and antiparticles in thermal equilibrium).
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Structure formation

Final problem: structure formation

In the classical BB picture, the initial

conditions for structure formation observed

are not explained. Furthermore, assuming

the observed Ωbaryons, the observed

structures (=us) cannot be explained.

The theory of inflation attempts to explain all of

the problems mentioned by invoking phase of

exponential expansion in the very early universe

(t . 10−16 s).
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Basic Idea, I

Use the Friedmann equation with a cosmological

constant:

H2(t) =

(
ȧ

a

)2

=
8πGρ

3
− k

a2
+

Λ

3
(6.136)

Basic assumption of inflationary cosmology:

During the big bang there was a phase

where Λ dominated the Friedmann equation.

H(t) =
ȧ

a
=

√
Λ

3
= const. (6.137)

since Λ = const. (probably. . . ).

Solution of Eq. (6.137):

a ∝ eHt (6.138)

and inserting into Eq. (6.113) shows that

Ω− 1 =
k

a2H2
∝ e−2Ht (6.139)
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Basic Idea, II

When did inflation happen?

Typical assumption: Inflation = phase transition

of a scalar field (“inflaton”) associated with Grand

Unifying Theories.

Therefore the assumptions:

• temperature kTGUT = 1015 GeV, when

1/H ∼ 10−34 sec (tstart ∼ 10−34 sec).

• inflation lasted for 100 Hubble times, i.e., for

∆T = 10−32 sec.

With Eq. (6.138):

Inflation: Expansion by factor e100 ∼ 1043.

. . . corresponding to a volume expansion by factor

∼ 10130 =⇒ solves hidden relics problem!

Furthermore, Eq. (6.139) shows

Ω− 1 = 10−86 (6.140)

=⇒ solves flatness problem!
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Basic Idea, III

Temperature behavior: During inflation universe

supercools:
Remember: entropy density

s =
ρc2 + P

T
(6.79)

But for Λ:

p = −ρc2 (6.117)

so that the entropy density of vacuum

svac = 0 (6.141)

Trivial result since vacuum is just one quantum state =⇒ very low
entropy.

Inflation produces no entropy =⇒ S existing before inflation

gets diluted, since entropy density s ∝ a−3.

But for relativistic particles s ∝ T 3 (Eq. 6.82), such that

aT = const. =⇒ Tafter = 10−43Tbefore (6.142)

When inflation stops: vacuum energy of inflaton field

transferred to normal matter

=⇒ “Reheating” to temperature

Treheating ∼ 1015 GeV (6.143)
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Summary

reheating

T(t) a(t)

time

a(t)

time

T(t)

inflation
(after Bergström & Goobar, 1999, Fig. 9.1, and Kolb & Turner,
Fig. 8.2)
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Scalar Fields, I

For inflation to work: need short-term

cosmological constant, i.e., need particles with

negative pressure.

Basic idea (Guth, 1981): cosmological phase

transition where suddenly a large Λ happens.

How? =⇒ Quantum Field Theory!

Describe hypothetical particle with a time-dependent

quantum field, φ(t), and potential, V (φ).

Simplest example from QFT (~ = c = 1):

V (φ) =
1

2
m2φ2 (6.144)

where m: “mass of field”.

Particle described by φ: “inflaton”.

For all scalar fields, particle physics shows:

ρφ =
1

2
φ̇2 + V (φ) (6.145)

Pφ =
1

2
φ̇2 − V (φ) (6.146)

i.e., obeys vacuum EOS!

“Vacuum”: particle “sits” at minimum of V .
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Scalar Fields, II

Typically: potential looks more complicated.

Due to symmetry, after harmonic oscillator, 2nd simplest

potential: Mexican hat potential (“Higgs potential”),

V (φ) = −µ2φ2 + λφ4 (6.147)

=⇒ Minimum of V still determines vacuum value.

For T 6= 0, need to take interaction with thermal bath into

account =⇒ Temperature dependent potential!

Veff(φ) = −(µ2 − aT 2)φ2 + λφ4 (6.148)

where a some constant.

(minimization of Helmholtz free energy, see Peacock, 1999, ,
p. 329ff., for details)
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Scalar Fields, III

0.0 0.2 0.4 0.6 0.8 1.0
φ (arbitrary units)
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itr

ar
y 
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)

The minimum of V is at

φ =





0 for T > Tc
√

(µ2 − aT 2)/(2λ) for T < Tc

(6.149)

where the critical temperature

Tc = µ/
√

a (6.150)

and

Vmin =





0 for T > Tc

−(µ2−aT 2)2

4λ for T < Tc

(6.151)

Since switch happens suddenly: phase transition
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Scalar Fields, IV

Minimum Vmin for T > Tc smaller than “vacuum

minimum” =⇒ Behaves like a cosmological

constant!

Since Tc ∝ µ,

Inflation sets in at mass scale of whatever

scalar field produces inflation.

Grand Unifying Theories: m ∼ 1015 GeV.

The problem is, what V (φ) to use. . .
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First-Order Inflation
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(after Peacock, 1999, Fig. 11.2)
Original idea (Guth, 1981):

V (φ, T ) = λ|φ|4 − b|φ|3 + aT 2|φ|2 (6.152)

has two minima for T greater than a critical temperature:
Vmin(φ = 0): false vacuum
Vmin(φ > 0): true vacuum iff < 0.

Particle can tunnel between both vacua: first order phase transition
=⇒ first order inflation.
Problem: vacuum tunnels between false and true vacua =⇒
formation of bubbles.
Outside of bubbles: inflation goes infinitely (“graceful exit problem”).

First order inflation is not feasible.
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Summary

First order inflation does not work =⇒ Potentials

derived from GUTs do not work.

=⇒However, many empirical potentials do not

suffer from these problems =⇒ inflation is

still theory of choice.

Catchphrases (Liddle & Lyth, 2000, Ch. 8):
• supersymmetry/-gravitation =⇒ tree-level potentials,
• renormalizable global susy,
• chaotic inflation,
• power-law inflation,
• hybrid inflation (combination of two scalar fields) =⇒

spontaneous or dynamical susy breaking,
• scalar-tensor gravity

. . . and many more
All are somewhat ad hoc, and have more or less foundations in
modern theories of QM and gravitation.

Information on what model correct from

1. predicted seed to structure formation, and

2. values of Ω and Λ.

=⇒Determine Ω and Λ!



6–72

Bibliography

Abramowitz, M., & Stegun, I. A., 1964, Handbook of Mathematical Functions, (Washington: U.S. Govern-
ment Printing Office), (9th reprint, Mineola: Dover, 1972)

Bennett, C. L., et al., 2003, ApJ, submitted

Bergström, L., & Goobar, A., 1999, Cosmology and Particle Physics, (Chichester: Wiley)

Burles, S., Nollett, K. M., & Turner, M. S., 1999, Big-Bang Nucleosynthesis: Linking Inner Space and
Outer Space, APS Centennial Exhibit, astro-ph/9903300

Carroll, S. M., 2001, Living Rev. Rel., 4, 2001

Carroll, S. M., Press, W. H., & Turner, E. L., 1992, ARA&A, 50, 499

Christlieb, N., et al., 2002, Nature, 419, 904

Gradstein, I. S., & Ryshik, I. M., 1981, Tables of Series, Products, and Integrals, Vol. 1, (Thun, Frank-
furt/M.: Harri Deutsch)

Islam, J. N., 1992, An Introduction to Mathematical Cosmology, Cambridge Univ. Press)

Kolb, E. W., & Turner, M. S., 1990, The Early Universe, Frontiers in Physics 69, (Reading, Mass.:
Addison-Wesley)

Liddle, A. R., & Lyth, D. H., 2000, Cosmological Inflation and Large-Scale Structure, (Cambridge: Cam-
bridge Univ. Press)

Olive, K. A., 1999, in Advanced School on Cosmology and Particle Physics, in press (astro-ph/9901231)

Peacock, J. A., 1999, Cosmological Physics, (Cambridge: Cambridge Univ. Press)

Penzias, A. A., & Wilson, R. W., 1965, ApJ, 142, 419

Smoot, G. F., 1997, in Strasbourg NATO school on the CMB, Kluwer), astro-ph/9705101

Thomas, D., Schramm, D. N., Olive, K. A., & Fields, B. D., 1993, ApJ, 406, 569

Tytler, D., O’Meara, J. M., Suzuki, N., & Lubin, D., 2000, Phys. Scripta, in press (astro-ph/0001318)


