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Introduction 1

Structure

Observations: cosmological principle holds: The

universe is homogeneous and isotropic.

=⇒Need theoretical framework obeying the

cosmological principle.

Use combination of
• General Relativity

• Thermodynamics

• Quantum Mechanics
=⇒ Complicated!

For 99% of the work, the above points can be

dealt with separately:
1. Define metric obeying cosmological

principle.

2. Obtain equation for evolution of universe

using Einstein field equations.

3. Use thermo/QM to obtain equation of state.

4. Solve equations.
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GRT vs. Newton

Before we can start to think about universe: Brief

introduction to assumptions of general relativity.
=⇒ See theory lectures for the gory details, or check with the
literature (Weinberg or MTW).

Assumptions of GRT:

• Space is 4-dimensional, might be curved

• Matter (=Energy) modifies space (Einstein

field equation).

• Covariance: physical laws must be formulated

in a coordinate-system independent way.

• Strong equivalence principle: There is no

experiment by which one can distinguish

between free falling coordinate systems and

inertial systems.

• At each point, space is locally Minkowski (i.e.,

locally, SRT holds).

=⇒Understanding of geometry of space

necessary to understand physics.
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2D Metrics

Before describing the 4D geometry of the

universe: first look at two-dimensional spaces

(easier to visualize).

After Silk (1997, p. 107)

There are three classes of isotropic and

homogeneous two-dimensional spaces:

• 2-sphere (S 2) positively curved

• x-y-plane (R2) zero curvature

• hyperbolic plane (H 2) negatively curved
(curvature ≈∑

angles in triangle >, =, or < 180◦)

We will now compute what the metric for these

spaces looks like.
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2D Metrics

The metric describes the local geometry of a space.

Differential distance, ds, in Euclidean space, R2:

ds2 = dx2
1 + dx2

2 (4.1)

The metric tensor, gµν, is defined via

ds2 =
∑

µ

∑

ν

gµν dxµ dxν =: gµν dxµ dxν (4.2)

(Einstein’s summation convention)

Thus, for the R2,

g11 = 1 g12 = 0

g21 = 0 g22 = 1
(4.3)

But: Other coordinate-systems possible!

Changing to polar coordinates r′, θ, defined by

x1 =: r′ cos θ and x2 =: r′ sin θ (4.4)

r´d

dθ
θ

θ
ds

dr´

x2

x 1

r´

it is easy to see that

ds2 = dr′
2
+ r′

2
dθ2 (4.5)

substituting r′ = Rr,

(change of scale)

ds2 = R{dr2 + r2 dθ2} (4.6)
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2D Metrics

A more complicated case occurs if space is curved. Easiest

case: surface of three-dimensional sphere (a two-sphere).
x3

θ x2

R

x1

θ r´

φ

After Kolb & Turner (1990, Fig. 2.1)

Two-sphere with radius R in R3:

x2
1 + x2

2 + x2
3 = R2 (4.7)

Length element of R3:

ds2 = dx2
1 + dx2

2 + dx2
3

Eq. (4.7) gives

x3 =
√

R2 − x2
1 − x2

2

such that

dx3 =
∂x3

∂x1
dx1 +

∂x3

∂x2
dx2 = −x1 dx1 + x2 dx2

√

R2 − x2
1 − x2

2

(4.8)

Introduce again polar coordinates r′, θ in x3-plane:

x1 =: r′ cos θ and x2 =: r′ sin θ (4.4)

(note: r′, θ only unique in upper or lower half-sphere)

The differentials are given by

dx1 = cos θ dr′ − r′ sin θ dθ

dx2 = sin θ dr′ + r′ cos θ dθ
(4.9)
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2D Metrics

In cartesian coordinates, the length element on S
2 is

ds2 = dx2
1 + dx2

2 +
(x1 dx1 + x2 dx2)

2

R2 − x2
1 − x2

2

(4.10)

inserting eq. (4.9) gives after some algebra

= r′
2

dθ2 +
R2

R2 − r′2
dr′

2
(4.11)

finally, defining r = r′/R (i.e., 0 ≤ r ≤ 1) results in

ds2= R2

{

dr2

1 − r2
+ r2 dθ2

}

(4.12)

Alternatively, we can work in spherical coordinates on S
2

x1 = R sin θ cosφ

x2 = R sin θ sinφ

x3 = R cos θ

(4.13)

(θ ∈ [0, π], φ ∈ [0, 2π]).

Going through the same steps as before, we obtain after

some tedious algebra

ds2 = R2
{

dθ2 + sin2 θ dφ2
}

(4.14)
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2D Metrics

(Important) remarks:

1. The 2-sphere has no edges, has no

boundaries, but has still a finite volume,

V = 4πR2.

2. Expansion or contraction of sphere caused by

variation of R =⇒ R determines the scale of

volumes and distances on S 2.

R is called the scale factor

3. Positions on S 2 are defined, e.g., by r and θ,

independent on the value of R

r and θ are called comoving coordinates

4. Although the metrics Eq. (4.10), (4.12), and

(4.14) look very different, they still describe the

same space =⇒ that’s why physics should be

covariant.
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2D Metrics

The hyperbolic plane, H 2, is defined by

x2
1 + x2

2 − x2
3 = −R2 (4.15)

If we work in Minkowski space, where

ds2 = dx2
1 + dx2

2 − dx2
3 (4.16)

then

= dx2
1 + dx2

2 −
(x1 dx1 + x2 dx2)

2

R2 + x2
1 + x2

2

(4.17)

=⇒substitute R → iR (where i =
√
−1) to

obtain same form as for sphere (eq. 4.11)!

Therefore,

ds2 = R2

{
dr2

1 + r2
+ r2 dθ2

}

(4.18)
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2D Metrics

The analogy to spherical coordinates on the

hyperbolic plane are given by

x1 = R sinh θ cosφ

x2 = R sinh θ sinφ

x3 = R cosh θ

(4.19)

(θ ∈ [−∞,+∞], φ ∈ [0, 2π]).

A session with Maple (see handout) will convince

you that these coordinates give

ds2 = R2
{

dθ2 + sinh2 θ dφ2
}

(4.20)

Remark:

H 2 is unbound and has an infinite volume.
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2D Metrics

To summarize:

Sphere:

ds2 = R2

{
dr2

1 − r2
+ r2 dθ2

}

(4.12)

Plane:

ds2 = R2
{

dr2 + r2 dθ2
}

(4.6)

Hyperbolic Plane:

ds2 = R2

{
dr2

1 + r2
+ r2 dθ2

}

(4.18)

=⇒ All three metrics can be written as

ds2 = R2

{
dr2

1 − k r2
+ r2 dθ2

}

(4.21)

where k defines the geometry:

k =







+1 spherical

0 planar

−1 hyperbolic

(4.22)
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2D Metrics

For “spherical coordinates” we found:

Sphere:

ds2 = R2
{

dθ2 + sin2 θ dφ2
}

(4.14)

Plane:

ds2 = R2
{

dθ2 + θ2dφ2
}

(4.6)

Hyperbolic plane:

ds2 = R2
{

dθ2 + sinh2 θ dφ2
}

(4.20)

=⇒ All three metrics can be written as

ds2 = R2
{

dθ2 + S2
k(θ) dφ2

}

(4.23)

where

Sk(θ) =







sin θ for k = +1

θ for k = 0

sinh θ for k = −1

(4.24)

We will also need the cos-like analogue

Ck(θ) =
√

1 − kS2
k(θ) =







cos θ for k = +1

1 for k = 0

cosh θ for k = −1

(4.25)

Note that, compared to the earlier formulae, some coordinates
have been renamed. This is confusing, but legal. . .
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RW Metric

• Cosmological principle + expansion =⇒
∃ freely expanding cosmical coordinate

system.

– Observers =: fundamental observers

– Time =: cosmic time
This is the coordinate system in which the 3K radiation is
isotropic, clocks can be synchronized, e.g., by adjusting time to
the local density of the universe.

=⇒ Metric has temporal and spatial part.
This also follows directly from the equivalence principle.

• Homogeneity and isotropy =⇒ spatial part is

spherically symmetric:

dψ2 := dθ2 + sin2 θ dφ2 (4.26)

• Expansion: ∃ scale factor, R(t) =⇒ measure

distances using comoving coordinates.

=⇒ metric looks like

ds2 = c2 dt2 −R2(t)
[
f2(r) dr2 + g2(r) dψ2

]

(4.27)

where f(r) and g(r) are arbitrary.
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RW Metric

Metrics of the form of eq. (4.27) are called

Robertson-Walker (RW) metrics (1935).
Previously studied by Friedmann and Lemaître. . .

One common choice is

ds2 = c2 dt2 −R2(t)
[

dr2 + S2
k(r) dψ2

] (4.28)

where

R(t): scale factor, containing the physics

t: cosmic time

r, θ, φ: comoving coordinates

Sk(r) was defined in Eq. (4.24).

Remark: θ and φ describe directions on sky, as

seen from the arbitrary center of the

coordinate system (=us), r can be interpreted

as a radial coordinate.
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RW Metric

The RW metric defines an universal coordinate

system tied to expansion of space:

B(x2,y2)

A(x1,y1)

d R(t1)

A(x1,y1)

B(x2,y2)

d R(t2)

Scale factor R(t) describes evolution of

universe.

• d is called the comoving distance.

• D(t) := d ·R(t) is called the proper distance,

(note that R is unitless, i.e., d and dR(t) are measured in Mpc)

“World model”: R(t) from GRT plus assumptions

about physics.
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RW Metric

Other forms of the RW metric are also used:

1. Substitution Sk(r) −→ r gives

ds2 = c2 dt2 − R2(t)

{

dr2

1 − kr2
+ r2 dψ2

}

(4.29)

(i.e., other definition of comoving radius r).

2. A metric with a dimensionless scale factor,

a(t) :=
R(t)

R(t0)
=
R(t)

R0
(4.30)

(where t0=today, i.e., a(t0) = 1), gives

ds2 = c2 dt2 − a2(t)

{

dr2 +
S2
k(R0r)

R2
0

dψ2

}

(4.31)

3. Using a(t) and the substitution Sk(r) −→ r is also

possible:

ds2 = c2 dt2−a2(t)

{

dr2

1 − k · (R0r)2
+ r2 dψ2

}

(4.32)

The units of R0r are Mpc =⇒ Used for observations!
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RW Metric

4. Replace cosmic time, t, by conformal time,

dη = dt/R(t) =⇒ conformal metric,

ds2 = R2(η)

{

dη2 − dr2

1 − kr
− r2 dψ2

}

(4.33)

Theoretical importance of this metric: For k = 0, i.e., a

flat space, the RW metric = Minkowski line element ×
R2(η) =⇒ Equivalence principle!

5. Finally, the metric can also be written in the isotropic

form,

ds2 = c2dt2 − R(t)

1 + (k/4)r2

{

dr2 + r2dψ2
}

(4.34)

Here, the term in {. . .} is just the line element of a

3d-sphere =⇒ isotropy!

Note: There are as many notations as authors, e.g., some

use a(t) where we use R(t), etc. =⇒ Be careful!

Note 2: Local homogeneity and isotropy (i.e., within a

Hubble radius, r = c/H0), do not imply global homogeneity

and isotropy =⇒ Cosmologies with a non-trivial topology

are possible (e.g., also with more dimensions. . . ).
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Hubble’s Law

Hubble’s Law follows from the variation of R(t):

R(t+
dt

)r

R(t)
r

r r

Small scales =⇒ Euclidean geometry

Proper distance between two observers:

D(t) = d ·R(t) (4.35)

where d: comoving distance.

Expansion =⇒ proper separation changes:

∆D

∆t
=
R(t + ∆t)d− R(t)d

∆t
(4.36)

Thus, for ∆t→ 0,

v =
dD

dt
= Ṙ d =

Ṙ

R
D =: HD (4.37)

=⇒ Identify local Hubble “constant” as

H =
Ṙ

R
= ȧ(t) (4.38)

(a(t) from Eq. 4.30, a(today) = 1)

Since R = R(t) =⇒H is time-dependent!

For small v, interpreted classically the red-shift is

z = 1 +
v

c
=⇒ z − 1 =

Hd

c
(4.39)
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Redshift, I

The cosmological redshift is a consequence of

the expansion of the universe:

The comoving distance is constant, thus in terms of the

proper distance:

d =
D(t = today)

R(t = today)
=
D(t)

R(t)
= const. (4.40)

Set a(t) = R(t)/R(t = today), then eq. (4.40) implies

λobs =
λemit

aemit
(4.41)

(λobs: observed wavelength, λemit: emitted wavelength)

Thus the observed redshift is

z =
λobs − λemit

λemit
=
λobs

λemit
− 1 (4.42)

or

1 + z =
1

aemit
=
R(t = today)

R(t)
(4.43)

Light emitted at z = 1 was emitted when the universe was half as
big as today!

z: measure for relative size of universe at time the observed

light was emitted.

Because of z = νemit/νobs,

νemit

νobs
=

1

aemit
(4.44)
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An alternative derivation of the cosmological redshift follows directly from general relativity, using the basic
GR fact that for photons ds2 = 0. Inserting this into the metric, and assuming without loss of generality
that dψ2 = 0, one finds

0 = c2 dt2 −R2(t) dr2 =⇒ dr = ± c dt

R(t)
(4.45)

Since photons travel forward, we choose the +-sign.

temit

temit+∆ te
tobs

tobs+∆ to

The comoving distance traveled by photons emitted at cosmic times temit and temit + ∆te is

r1 =

∫
tobs

temit

c dt

R(t)
and r2 =

∫
tobs+∆to

temit+∆te

c dt

R(t)
(4.46)

But the comoving distances are equal, r1 = r2! Therefore

0 =

∫
tobs

temit

c dt

R(t)
−
∫

tobs+∆to

temit+∆te

c dt

R(t)
(4.47)

=

∫
temit+∆te

temit

c dt

R(t)
−
∫

tobs+∆to

tobs

c dt

R(t)
(4.48)

If ∆t small =⇒ R(t) ≈ const.:

=
c ∆te
R(temit)

− c ∆to
R(tobs)

(4.49)

For a wave: c∆t = λ, such that

λemit

R(temit)
=

λobs

R(tobs)
⇐⇒ λemit

λobs

=
R(temit)

R(tobs)
(4.50)

From this equation it is straightforward to derive Eq. (4.42).
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Redshift, II

Outside of the local universe: Eq. (4.43) only valid

interpretation of z.

=⇒ It is common to interpret z as in special

relativity:

1 + z =

√

1 + v/c

1 − v/c
This is WRONG

(4.51)

Redshift is due to expansion of space, not due to

motion of galaxy.
What is true is that z is accumulation of many infinitesimal
red-shifts à la Eq. (4.39), see, e.g., Peacock (1999).
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Time Dilatation

Note the implication of Eq. (4.49) on the hand-out:

c ∆te
R(temit)

=
c ∆to
R(tobs)

(4.49)

=⇒ dt/R is constant:

dt

R(t)
= const. (4.52)

In other words:
dtobs

dtemit
=
R(tobs)

R(temit)
= 1 + z (4.53)

=⇒ Time dilatation of events at large z.

This cosmological time dilatation has been

observed in the light curves of supernova

outbursts.

All other observables apart from z (e.g., number

density N (z), luminosity distance dL, etc.)

require explicit knowledge of R(t) =⇒ Need to

look at the dynamics of the universe.
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Friedmann Equations, I

General relativistic approach: Insert metric into

Einstein equation to obtain differential equation

for R(t):

Einstein equation:

Rµν −
1

2
Rgµν

︸ ︷︷ ︸

Gµν

=
8πG

c4
Tµν + Λgµν (4.54)

where

gµν: Metric tensor (ds2 = gµν dxµ dxν)

Rµν: Ricci tensor (function of gµν)

R: Ricci scalar (function of gµν)

Gµν: Einstein tensor (function of gµν)

Tµν: Stress-energy tensor, describing curvature

of space due to fields present (matter,

radiation,. . . )

Λ: Cosmological constant

=⇒Messy, but doable
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Friedmann Equations, II

r R
(t)

m

M

Here, Newtonian derivation of

Friedmann equations: Dynamics

of a mass element on the

surface of sphere of density ρ(t)

and comoving radius d, i.e.,

proper radius d ·R(t) (after

McCrea & Milne, 1934).

Mass of sphere:

M =
4π

3
(dR)3ρ(t) =

4π

3
d3ρ0 where ρ(t) =

ρ0

R(t)3

(4.55)

Force on mass element:

m
d2

dt2
(

dR(t)
)

= − GMm

(dR(t))2
= −4πG

3

dρ0

R2(t)
m (4.56)

Canceling m · d gives momentum equation:

R̈ = −4πG

3

ρ0

R2
= −4πG

3
ρ(t)R(t) (4.57)

From energy conservation, or from multiplying Eq. (4.57)

with Ṙ and integrating, we obtain the energy equation,

1

2
Ṙ2 = +

4πG

3

ρ0

R(t)
+ const.

= +
4πG

3
ρ(t)R2(t) + const.

(4.58)

where the constant can only be obtained from GR.
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Friedmann Equations, III

Problems with the Newtonian derivation:

1. Cloud is implicitly assumed to have rcloud <∞
(for rcloud → ∞ the force is undefined)

=⇒ violates cosmological principle.

2. Particles move through space

=⇒ v > c possible

=⇒ violates SRT.

Why do we get correct result?

GRT −→ Newton for small scales and mass

densities; since universe is isotropic =⇒ scale

invariance on Mpc scales =⇒ Newton sufficient

(classical limit of GR).

(In fact, point 1 above does hold in GR: Birkhoff’s theorem).
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Friedmann Equations, IV

The exact GR derivation of Friedmanns equation

gives:

R̈ = −4πG

3
R
(

ρ +
3p

c2

)

+
[1

3
ΛR
]

Ṙ2 = +
8πGρ

3
R2 − kc2 +

[1

3
Λc2R2

] (4.59)

Notes:

1. For k = 0: Eq. (4.59) −→ Eq. (4.58).

2. k ∈ {−1, 0,+1} determines the curvature of

space.

3. The density, ρ, includes the contribution of all

different kinds of energy (remember

mass-energy equivalence!).

4. There is energy associated with the vacuum,

parameterized by the parameter Λ.

The evolution of the Hubble parameter is (Λ = 0):

(
Ṙ

R

)2

= H2(t) =
8πGρ

3
− kc2

R2
(4.60)
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The Critical Density, I

Solving Eq. (4.60) for k:

R2

c

(
8πG

3
ρ−H2

)

= k (4.61)

=⇒Sign of curvature parameter k only depends

on density, ρ:

Defining

ρc =
3H2

8πG
and Ω =

ρ

ρc
(4.62)

it is easy to see that:

Ω > 1 =⇒ k > 0 closed

Ω = 1 =⇒ k = 0 flat

Ω < 1 =⇒ k < 0 open

thus ρc is called the critical density.

For Ω ≤ 1 the universe will expand until ∞,

for Ω > 1 we will see the “big crunch”.

Current value of ρc: ∼ 1.67 × 10−24 g/cm3,

(3. . . 10 H-atoms/m3).

Measured: Ω = 0.1 . . . 0.3.

(but note that Λ can influence things (ΩΛ = 0.7)!).
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The Critical Density, II

Ω has a second order effect on the expansion:

Taylor series of R(t) around t = t0:

R(t)

R(t0)
=
R(t0)

R(t0)
+
Ṙ(t0)

R(t0)
(t− t0)+

1

2

R̈(t0)

R(t0)
(t− t0)2

(4.63)

The Friedmann equation Eq. (4.57) can be written

R̈

R
= −4πG

3
ρ = −4πG

3
Ω

3H2

8πG
= −ΩH2

2
(4.64)

Since H(t) = Ṙ/R (Eq. 4.38), Eq. (4.63) is

R(t)

R(t0)
= 1+H0 (t−t0)−

1

2

Ω0

2
H2

0 (t−t0)2 (4.65)

where H0 = H(t0) and Ω0 = Ω(t0).
The subscript 0 is often omitted in the case of Ω.

Often, Eq. (4.65) is written using the deceleration

parameter:

q :=
Ω

2
= −R̈(t0)R(t0)

Ṙ2(t0)
(4.66)
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Equation of state, I

For the evolution of the universe, need to look at

three different kinds of equation of state:

Matter : Normal particles get diluted by expansion

of the universe:

ρm ∝ R−3 (4.67)

Matter is also often called dust by cosmologists.

Radiation : The energy density of radiation

decreases because of volume expansion and

because of the cosmological redshift

(Eq. 4.50: λo/λe = νe/νo = R(to)/R(te)) =⇒
ρr ∝ R−4 (4.68)

Vacuum : The vacuum energy density (=Λ) is

independent of R:

ρv = const. (4.69)

Inserting these equations of state into the Friedmann

equation and solving with the boundary condition

R(t = 0) = 0 then gives a specific world model.
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Equation of state, II

Current scale factor is determined by H0 and Ω0:

Friedmann for t = t0:

Ṙ2
0 −

8πG

3
ρR2

0 = −kc2 (4.70)

Insert Ω and note H0 = Ṙ0/R0

⇐⇒ H2
0R

2
0 −H2

0Ω0R
2
0 = −kc2 (4.71)

And therefore

R0 =
c

H0

√

k

Ω − 1
(4.72)

For Ω −→ 0, R0 −→ c/H0, the Hubble length.

For Ω = 1, R0 is arbitrary.

We now have everything we need to solve the

Friedmann equation and determine the evolution

of the universe. Three cases: k = 0, +1, −1.
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k = 0, Matter dominated

For the matter dominated, flat case (the Einstein-de Sitter

case), the Friedmann equation is

Ṙ2 − 8πG

3

ρ0R
3
0

R3
R2 = 0 (4.73)

For k = 0: Ω = 1 and

8πGρ0

3
= Ω0H

2
0R

3
0 = H2

0R
3
0 (4.74)

Therefore, the Friedmann eq. is

Ṙ2 − H2
0R

3
0

R
= 0 =⇒ dR

dt
= H0R

3/2
0 R−1/2 (4.75)

Separation of variables and setting R(0) = 0,
∫ R(t)

0
R1/2 dR = H0R

3/2
0 t ⇐⇒ 2

3
R3/2(t) = H0R

3/2
0 t

(4.76)

Such that

R(t) = R0

(
3H0

2
t

)2/3

(4.77)

For k = 0, the universe expands until ∞, its current age

(R(t0) = R0) is given by

t0 =
2

3H0
(4.78)

Reminder: The Hubble-Time is H−1
0 = 9.78 Gyr/h.
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k = +1, Matter dominated, I

For the matter dominated, closed case, Friedmanns

equation is

Ṙ2 − 8πG

3

ρ0R
3
0

R
= −c2 ⇐⇒ Ṙ2 − H2

0R
3
0Ω0

R
= −c2

(4.79)

Inserting R0 from Eq. (4.72) gives

Ṙ2 − H2
0c

3Ω0

H3
0(Ω − 1)3/2

1

R
= −c2 (4.80)

which is equivalent to

dR

dt
= c

(
ξ

R
− 1

)1/2

with ξ =
c

H0

Ω0

(Ω0 − 1)3/2
(4.81)

With the boundary condition R(0) = 0, separation of

variables gives

ct =

∫ R(t)

0

dR

(ξ/R− 1)1/2
=

∫ R(t)

0

√
R dR

(ξ − R)1/2
(4.82)

Integration by substitution gives

R = ξ sin2 θ

2
=
ξ

2
(1 − cos θ)

=⇒ ct =
ξ

2
(θ − sin θ) (4.83)
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k = +1, Matter dominated, II

1.5 2.0 2.5 3.0 3.5 4.0
Ω

4.5

5.0

5.5

6.0

6.5

t 0
/h

 [G
yr

]

The age of the universe, t0, is obtained by solving

R0 =
c

H0(Ω0 − 1)1/2

=
ξ

2
(1 − cos θ0)=

1

2

c

H0

Ω0

(Ω0 − 1)3/2
(1 − cos θ0) (4.84)

(remember Eq. 4.72!). Therefore

cos θ0 =
2 − Ω0

Ω0
⇐⇒ sin θ0 =

2

Ω0

√

Ω0 − 1 (4.85)

Inserting this into Eq. (4.83) gives

t0 =
1

2H0

Ω0

(Ω0 − 1)3/2

[

arccos

(
2 − Ω0

Ω0

)

− 2

Ω0

√

Ω0 − 1

]

(4.86)
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k = +1, Matter dominated, III

-20 0 20 40 60
t-t0 (arbitrary units)

0.0

0.5

1.0

1.5

R
(t

)/
R

(t
0)

Ω=5 Ω=3

Ω=10

Since R is a cyclic function =⇒ The closed universe has a

finite lifetime.

Max. expansion at θ = π, with a maximum scale factor of

Rmax = ξ =
c

H0

Ω0

(Ω0 − 1)3/2
(4.87)

After that: contraction to the big crunch at θ = 2π.

=⇒ The lifetime of the closed universe is

t =
π

H0

Ω0

(Ω0 − 1)3/2
(4.88)
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k = −1, Matter dominated, I

Finally, the matter dominated, open case. This case is very

similar to the case of k = +1:

For k = −1, the Friedmann equation becomes

dR

dt
= c

(
ζ

R
+ 1

)1/2

(4.89)

where

ζ =
c

H0

Ω0

(1 − Ω0)3/2
(4.90)

Separation of variables gives after a little bit of algebra

R =
ζ

2
(cosh θ − 1)

ct =
ζ

2
(sinh θ − 1)

(4.91)

where the integration was again performed by substitution.

Note: θ here has nothing to do with the coordinate angle θ!
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k = −1, Matter dominated, II

0.2 0.4 0.6 0.8
Ω

6

7

8

9

10

t 0
/h

 [G
yr

]

To obtain the age of the universe, note that at the present

time,

cosh θ0 =
2 − Ω0

Ω0

sinh θ0 =
2

Ω0

√

1 − Ω0

(4.92)

(identical derivation as that leading to Eq. 4.84) such that

t0 =
1

2H0

Ω0

(1 − Ω0)3/2
·

·
{

2

Ω0

√

1 − Ω0 − ln

(

2 − Ω0 + 2
√

1 − Ω0

Ω0

)} (4.93)
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Summary

For the matter dominated case, our results from Eqs. (4.83),

and (4.91) can be written with the functions Sk and Ck
(Eqs. 4.24 and 4.25):

R = kR (1 − Ck(θ))

ct = kR (θ − Sk(θ))
(4.94)

where

Sk(θ) =







sin θ

θ

sinh θ

and Ck(θ) =







cos θ for k = +1

1 for k = 0

cosh θ for k = −1
(4.24, 4.25)

Eq. (4.94) is called the cycloid solution.

The characteristic radius, R, is given by

R =
c

H0

Ω0/2

(k (Ω0 − 1))3/2
(4.95)

(note typo in Eq. 3.42 of Peacock, 1999).

Notes:

1. Eq. (4.94) can also be derived as the result of the

Newtonian collapse/expansion of a spherical mass

distribution.

2. θ is called the development angle, it can be shown to be

equal to the conformal time of Eq. (4.33).
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Summary

0.0 0.5 1.0 1.5
ct/2πR

0.1

1.0

10.0

R
(t

)/
R

k=-1

k= 0

k=+1
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