

Structure

Observations: cosmological principle holds: The universe is homogeneous and isotropic.

⇒Need theoretical framework obeying the cosmological principle.

Use combination of

- General Relativity
- Thermodynamics
- Quantum Mechanics

 \implies Complicated!

For 99% of the work, the above points can be dealt with separately:

- 1. Define metric obeying cosmological principle.
- 2. Obtain equation for evolution of universe using Einstein field equations.
- 3. Use thermo/QM to obtain equation of state.
- 4. Solve equations.

GRT vs. Newton

Before we can start to think about universe: Brief introduction to assumptions of general relativity.

 \implies See theory lectures for the gory details, or check with the literature (Weinberg or MTW).

Assumptions of GRT:

- Space is 4-dimensional, might be curved
- Matter (=Energy) modifies space (Einstein field equation).
- Covariance: physical laws must be formulated in a coordinate-system independent way.
- Strong equivalence principle: There is no experiment by which one can distinguish between free falling coordinate systems and inertial systems.
- At each point, space is locally Minkowski (i.e., locally, SRT holds).

⇒ Understanding of geometry of space necessary to understand physics.

Before describing the 4D geometry of the universe: first look at two-dimensional spaces (easier to visualize).

After Silk (1997, p. 107)

There are three classes of isotropic and homogeneous two-dimensional spaces:

- 2-sphere (\mathscr{S}^2) positively curved
- x-y-plane (\mathbb{R}^2) zero curvature
- hyperbolic plane (\mathscr{H}^2) negatively curved

(curvature $\approx \sum$ angles in triangle >, =, or < 180°)

We will now compute what the metric for these spaces looks like.

The metric describes the local geometry of a space.

Differential distance, ds, in Euclidean space, \mathbb{R}^2 :

$$ds^2 = dx_1^2 + dx_2^2$$
 (4.1)

The metric tensor, $g_{\mu\nu}$, is defined via

$$ds^{2} = \sum_{\mu} \sum_{\nu} g_{\mu\nu} dx^{\mu} dx^{\nu} =: g_{\mu\nu} dx^{\mu} dx^{\nu}$$
(4.2)

(Einstein's summation convention) Thus, for the \mathbb{R}^2 ,

x₂

$$g_{11} = 1$$
 $g_{12} = 0$
 $g_{21} = 0$ $g_{22} = 1$ (4.3)

But: Other coordinate-systems possible! Changing to polar coordinates r', θ , defined by

dr'

r′dθ

r′

dθ

FRW Metric

θ

arwick

ds

x₁

$$x_1 =: r' \cos \theta$$
 and $x_2 =: r' \sin \theta$ (4.4)

it is easy to see that

$$ds^2 = dr'^2 + r'^2 d\theta^2$$
 (4.5)

substituting r' = Rr, (change of scale)

$$ds^{2} = R\{dr^{2} + r^{2} d\theta^{2}\}$$
 (4.6)

A more complicated case occurs if space is curved. Easiest case: surface of three-dimensional sphere (a two-sphere).

 $x_1^2 + x_2^2 + x_3^2 = R^2$ (4.7) Length element of \mathbb{R}^3 :

$$ds^2 = dx_1^2 + dx_2^2 + dx_3^2$$

Eq. (4.7) gives

$$x_3 = \sqrt{R^2 - x_1^2 - x_2^2}$$

After Kolb & Turner (1990, Fig. 2.1) such that

$$dx_{3} = \frac{\partial x_{3}}{\partial x_{1}} dx_{1} + \frac{\partial x_{3}}{\partial x_{2}} dx_{2} = -\frac{x_{1} dx_{1} + x_{2} dx_{2}}{\sqrt{R^{2} - x_{1}^{2} - x_{2}^{2}}}$$
(4.8)

Introduce again polar coordinates r', θ in x_3 -plane:

$$x_1 =: r' \cos \theta$$
 and $x_2 =: r' \sin \theta$ (4.4)

(note: r', θ only unique in upper or lower half-sphere) The differentials are given by

$$dx_{1} = \cos\theta \ dr' - r' \sin\theta \ d\theta$$

$$dx_{2} = \sin\theta \ dr' + r' \cos\theta \ d\theta$$
(4.9)

In cartesian coordinates, the length element on \mathscr{S}^2 is

$$ds^{2} = dx_{1}^{2} + dx_{2}^{2} + \frac{(x_{1} dx_{1} + x_{2} dx_{2})^{2}}{R^{2} - x_{1}^{2} - x_{2}^{2}}$$
(4.10)

inserting eq. (4.9) gives after some algebra

$$= r'^2 \,\mathrm{d}\theta^2 + \frac{R^2}{R^2 - r'^2} \,\mathrm{d}r'^2 \tag{4.11}$$

finally, defining r=r'/R (i.e., 0 $\leq r \leq$ 1) results in

$$ds^{2} = R^{2} \left\{ \frac{dr^{2}}{1 - r^{2}} + r^{2} d\theta^{2} \right\}$$
(4.12)

Alternatively, we can work in spherical coordinates on \mathscr{S}^2

$$x_{1} = R \sin \theta \cos \phi$$

$$x_{2} = R \sin \theta \sin \phi$$
 (4.13)

$$x_{3} = R \cos \theta$$

($heta\in [\mathbf{0},\pi]$, $\phi\in [\mathbf{0},\mathbf{2}\pi]$).

Going through the same steps as before, we obtain after some tedious algebra

$$ds^{2} = R^{2} \left\{ d\theta^{2} + \sin^{2} \theta \ d\phi^{2} \right\}$$
(4.14)

(Important) remarks:

- 1. The 2-sphere has no edges, has no boundaries, but has still a finite volume, $V = 4\pi R^2$.
- 2. Expansion or contraction of sphere caused by variation of $R \Longrightarrow R$ determines the *scale* of volumes and distances on \mathscr{S}^2 .

R is called the scale factor

3. Positions on \mathscr{S}^2 are defined, e.g., by r and θ , *independent* on the value of R

r and θ are called *comoving coordinates*

4. Although the metrics Eq. (4.10), (4.12), and
(4.14) look very different, they still describe the same space ⇒ that's why physics should be covariant.

The hyperbolic plane, \mathscr{H}^2 , is defined by

$$x_1^2 + x_2^2 - x_3^2 = -R^2 \tag{4.15}$$

If we work in Minkowski space, where

$$ds^2 = dx_1^2 + dx_2^2 - dx_3^2$$
 (4.16)

then

$$= dx_1^2 + dx_2^2 - \frac{(x_1 dx_1 + x_2 dx_2)^2}{R^2 + x_1^2 + x_2^2} \quad (4.17)$$

 \Longrightarrow substitute $R \rightarrow iR$ (where $i = \sqrt{-1}$) to

obtain same form as for sphere (eq. 4.11)! Therefore,

$$ds^{2} = R^{2} \left\{ \frac{dr^{2}}{1+r^{2}} + r^{2} d\theta^{2} \right\}$$
(4.18)

The analogy to spherical coordinates on the hyperbolic plane are given by

$$x_{1} = R \sinh \theta \cos \phi$$

$$x_{2} = R \sinh \theta \sin \phi \qquad (4.19)$$

$$x_{3} = R \cosh \theta$$

$$(\theta \in [-\infty, +\infty], \phi \in [0, 2\pi]).$$

A session with Maple (see handout) will convince you that these coordinates give

$$ds^{2} = R^{2} \left\{ d\theta^{2} + \sinh^{2} \theta \ d\phi^{2} \right\}$$
(4.20)

Remark:

 \mathscr{H}^2 is unbound and has an infinite volume.

Transcript of Maple session to obtain Eq. (4.20):

```
>
          x1:=r*sinh(theta)*cos(phi);
                                      x1 := r \sinh(\theta) \cos(\phi)
          x2:=r*sinh(theta)*sin(phi);
    >
                                      x2 := r \sinh(\theta) \sin(\phi)
          x3:=r*cosh(theta);
    >
                                          x3 := r \cosh(\theta)
          dx1:=diff(x1,theta)*dtheta+diff(x1,phi)*dphi;
    >
                  dx1 := r \cosh(\theta) \cos(\phi) dtheta - r \sinh(\theta) \sin(\phi) dphi
          dx2:=diff(x2,theta)*dtheta+diff(x2,phi)*dphi;
    >
                  dx2 := r \cosh(\theta) \sin(\phi) dtheta + r \sinh(\theta) \cos(\phi) dphi
          ds2:=dx1*dx1+dx2*dx2-(x1*dx1+x2*dx2)^2/(r^2+x 1^2+x2^2);
    >
   ds\mathcal{Z} := (r\cosh(\theta)\cos(\phi) dtheta - r\sinh(\theta)\sin(\phi) dphi)^2
          + (r \cosh(\theta) \sin(\phi) dtheta + r \sinh(\theta) \cos(\phi) dphi)^2 - (
         r \sinh(\theta) \cos(\phi) (r \cosh(\theta) \cos(\phi) dtheta - r \sinh(\theta) \sin(\phi) dphi)
          + r \sinh(\theta) \sin(\phi) (r \cosh(\theta) \sin(\phi) dtheta + r \sinh(\theta) \cos(\phi) dphi))^2 / (
         r^2 + r^2 \sinh(\theta)^2 \cos(\phi)^2 + r^2 \sinh(\theta)^2 \sin(\phi)^2)
    > expand(ds2);
r^2 \cosh(\theta)^2 \cos(\phi)^2 dtheta^2 + r^2 \sinh(\theta)^2 \sin(\phi)^2 dphi^2 + r^2 \cosh(\theta)^2 \sin(\phi)^2 dtheta^2
      +r^{2}\sinh(\theta)^{2}\cos(\phi)^{2} dphi^{2} - rac{r^{4}\sinh(\theta)^{2}\cos(\phi)^{4}\cosh(\theta)^{2} dtheta^{2}}{r^{4}\cosh(\theta)^{2} dtheta^{2}}
      -2\frac{r^4\sinh(\theta)^2\cos(\phi)^2\cosh(\theta)^2\,dtheta^2\sin(\phi)^2}{\%1}-\frac{r^4\sinh(\theta)^2\sin(\phi)^4\cosh(\theta)^2\,dtheta^2}{\%1}
                                                                                            \%1
     \%1 := r^2 + r^2 \sinh(\theta)^2 \cos(\phi)^2 + r^2 \sinh(\theta)^2 \sin(\phi)^2
    > simplify(",{cosh(theta)^2-sinh(theta)^2=1}, [cosh(theta)]);
                                r^2 dtheta^2 + r^2 \sinh(\theta)^2 dphi^2
```

4-11

2D Metrics

To summarize:

Sphere:

$$ds^{2} = R^{2} \left\{ \frac{dr^{2}}{1 - r^{2}} + r^{2} d\theta^{2} \right\}$$
(4.12)

Plane:

$$ds^{2} = R^{2} \left\{ dr^{2} + r^{2} d\theta^{2} \right\}$$
(4.6)

Hyperbolic Plane:

$$ds^{2} = R^{2} \left\{ \frac{dr^{2}}{1 + r^{2}} + r^{2} d\theta^{2} \right\}$$
(4.18)

 $\implies \text{All three metrics can be written as}$ $ds^{2} = R^{2} \left\{ \frac{dr^{2}}{1 - kr^{2}} + r^{2} d\theta^{2} \right\}$ (4.21)

where k defines the geometry:

$$x = egin{cases} +1 & ext{spherical} \ 0 & ext{planar} \ -1 & ext{hyperbolic} \end{cases}$$
 (4.22)

JWarwick

4-12

2D Metrics

For "spherical coordinates" we found:

Sphere:

$$ds^{2} = R^{2} \left\{ d\theta^{2} + \sin^{2} \theta \ d\phi^{2} \right\}$$
(4.14)

Plane:

$$ds^{2} = R^{2} \left\{ d\theta^{2} + \theta^{2} d\phi^{2} \right\}$$
(4.6)

Hyperbolic plane:

$$ds^{2} = R^{2} \left\{ d\theta^{2} + \sinh^{2} \theta \ d\phi^{2} \right\}$$
(4.20)

 \implies All three metrics can be written as

$$\mathrm{d}s^2 = R^2 \left\{ \mathrm{d}\theta^2 + S_k^2(\theta) \, \mathrm{d}\phi^2 \right\}$$
(4.23)

where

$$S_k(\theta) = \begin{cases} \sin \theta & \text{for } k = +1 \\ \theta & \text{for } k = 0 \\ \sinh \theta & \text{for } k = -1 \end{cases}$$
(4.24)

We will also need the $\cos\mbox{-like}$ analogue

$$C_k(\theta) = \sqrt{1 - kS_k^2(\theta)} = \begin{cases} \cos \theta & \text{for } k = +1 \\ 1 & \text{for } k = 0 \\ \cosh \theta & \text{for } k = -1 \end{cases}$$
(4.25)

Note that, compared to the earlier formulae, some coordinates have been renamed. This is confusing, but legal...

UWarwick

FRW Metric

- Cosmological principle + expansion ⇒
 ∃ freely expanding cosmical coordinate system.
 - Observers =: fundamental observers
 - Time =: cosmic time

This is the coordinate system in which the 3K radiation is isotropic, clocks can be synchronized, e.g., by adjusting time to the local density of the universe.

 \implies Metric has temporal and spatial part.

This also follows directly from the equivalence principle.

 Homogeneity and isotropy => spatial part is spherically symmetric:

$$\mathrm{d}\psi^2 := \mathrm{d}\theta^2 + \sin^2\theta \,\,\mathrm{d}\phi^2 \tag{4.26}$$

• *Expansion:* \exists scale factor, $R(t) \Longrightarrow$ measure distances using comoving coordinates.

 \Longrightarrow metric looks like

$$ds^{2} = c^{2} dt^{2} - R^{2}(t) \left[f^{2}(r) dr^{2} + g^{2}(r) d\psi^{2} \right]$$
(4.27)

where f(r) and g(r) are arbitrary.

UWarwick

FRW Metric

Metrics of the form of eq. (4.27) are called Robertson-Walker (RW) metrics (1935).

Previously studied by Friedmann and Lemaître...

One common choice is

d
$$s^2=c^2\; \mathrm{d}t^2-R^2(t)\left[\mathrm{d}r^2+S_k^2(r)\;\mathrm{d}\psi^2
ight]~~$$
(4.28)

where

R(t): scale factor, containing the physics

t: cosmic time

 r, θ, ϕ : comoving coordinates

 $S_k(r)$ was defined in Eq. (4.24).

Remark: θ and ϕ describe directions on sky, as seen from the arbitrary center of the coordinate system (=us), r can be interpreted as a radial coordinate.

The RW metric defines an universal coordinate system tied to expansion of space:

- \bullet d is called the comoving distance.
- $D(t) := d \cdot R(t)$ is called the proper distance,

(note that R is unitless, i.e., d and dR(t) are measured in Mpc)

"World model": R(t) from GRT *plus* assumptions about physics.

Other forms of the RW metric are also used:

1. Substitution $S_k(r) \longrightarrow r$ gives

$$ds^{2} = c^{2} dt^{2} - R^{2}(t) \left\{ \frac{dr^{2}}{1 - kr^{2}} + r^{2} d\psi^{2} \right\}$$
(4.29)

(i.e., other definition of comoving radius r).

2. A metric with a dimensionless scale factor,

$$a(t) := \frac{R(t)}{R(t_0)} = \frac{R(t)}{R_0}$$
(4.30)

(where t_0 =today, i.e., $a(t_0) = 1$), gives

Warwick

FRW Metric

$$ds^{2} = c^{2} dt^{2} - a^{2}(t) \left\{ dr^{2} + \frac{S_{k}^{2}(R_{0}r)}{R_{0}^{2}} d\psi^{2} \right\}$$
(4.31)

3. Using a(t) and the substitution $S_k(r) \longrightarrow r$ is also possible:

$$ds^{2} = c^{2} dt^{2} - a^{2}(t) \left\{ \frac{dr^{2}}{1 - k \cdot (R_{0}r)^{2}} + r^{2} d\psi^{2} \right\}$$
(4.32)

The units of R_0r are Mpc \implies Used for observations!

4. Replace cosmic time, t, by conformal time, $d\eta = dt/R(t) \Longrightarrow$ conformal metric,

$$ds^{2} = R^{2}(\eta) \left\{ d\eta^{2} - \frac{dr^{2}}{1 - kr} - r^{2} d\psi^{2} \right\}$$
(4.33)

Theoretical importance of this metric: For k = 0, i.e., a flat space, the RW metric = Minkowski line element × $R^2(\eta) \Longrightarrow$ Equivalence principle!

5. Finally, the metric can also be written in the isotropic form,

$$ds^{2} = c^{2}dt^{2} - \frac{R(t)}{1 + (k/4)r^{2}} \left\{ dr^{2} + r^{2}d\psi^{2} \right\}$$
(4.34)

Here, the term in $\{\ldots\}$ is just the line element of a 3d-sphere \implies isotropy!

Note: There are as many notations as authors, e.g., some use a(t) where we use R(t), etc. \Longrightarrow Be careful! *Note 2: Local* homogeneity and isotropy (i.e., within a Hubble radius, $r = c/H_0$), do not imply *global* homogeneity and isotropy \Longrightarrow Cosmologies with a non-trivial topology are possible (e.g., also with more dimensions...).

FRW Metric

Warwick

Hubble's Law

Hubble's Law follows from the variation of R(t):

Small scales \implies Euclidean geometry

Proper distance between two observers:

$$D(t) = d \cdot R(t) \tag{4.35}$$

where d: comoving distance.

Expansion \implies proper separation changes:

$$\frac{\Delta D}{\Delta t} = \frac{R(t + \Delta t)d - R(t)d}{\Delta t}$$
(4.36)

Thus, for $\Delta t
ightarrow$ 0,

$$\boldsymbol{v} = \frac{\mathsf{d}D}{\mathsf{d}t} = \dot{R} \ \boldsymbol{d} = \frac{\dot{R}}{R} \ \boldsymbol{D} =: \boldsymbol{H} \ \boldsymbol{D}$$
(4.37)

 \implies Identify local Hubble "constant" as

$$H = \frac{\dot{R}}{R} = \dot{a}(t) \tag{4.38}$$

(a(t) from Eq. 4.30, a(today) = 1) Since $R = R(t) \Longrightarrow H$ is time-dependent!

For small v, interpreted classically the red-shift is

$$z = 1 + \frac{v}{c} \implies z - 1 = \frac{Hd}{c}$$
 (4.39)

UWarwick

Observational Quantities

Redshift, I

The cosmological redshift is a consequence of the expansion of the universe:

The comoving distance is constant, thus in terms of the proper distance:

$$d = \frac{D(t = \text{today})}{R(t = \text{today})} = \frac{D(t)}{R(t)} = \text{const.}$$
(4.40)

Set a(t) = R(t)/R(t = today), then eq. (4.40) implies

$$\lambda_{\rm obs} = \frac{\lambda_{\rm emit}}{a_{\rm emit}} \tag{4.41}$$

(λ_{obs} : observed wavelength, λ_{emit} : emitted wavelength) Thus the observed redshift is

$$z = rac{\lambda_{
m obs} - \lambda_{
m emit}}{\lambda_{
m emit}} = rac{\lambda_{
m obs}}{\lambda_{
m emit}} - 1$$
 (4.42)

or

$$1 + z = \frac{1}{a_{\text{emit}}} = \frac{R(t = \text{today})}{R(t)}$$
(4.43)

Light emitted at z = 1 was emitted when the universe was half as big as today!

z: measure for *relative size* of universe at time the observed light was emitted.

Because of $z = \nu_{\text{emit}} / \nu_{\text{obs}}$,

$$\frac{\nu_{\text{emit}}}{\nu_{\text{obs}}} = \frac{1}{a_{\text{emit}}} \tag{4.44}$$

UWarwick

Observational Quantities

4–19

An alternative derivation of the cosmological redshift follows directly from general relativity, using the basic GR fact that for photons $ds^2 = 0$. Inserting this into the metric, and assuming without loss of generality that $d\psi^2 = 0$, one finds

$$0 = c^2 dt^2 - R^2(t) dr^2 \implies dr = \pm \frac{c dt}{R(t)}$$
(4.45)

Since photons travel forward, we choose the +-sign.

The *comoving* distance traveled by photons emitted at cosmic times t_{emit} and $t_{emit} + \Delta t_e$ is

$$r_{1} = \int_{t_{\text{emit}}}^{t_{\text{obs}}} \frac{c \, \mathrm{d}t}{R(t)} \quad \text{and} \quad r_{2} = \int_{t_{\text{emit}}+\Delta t_{e}}^{t_{\text{obs}}+\Delta t_{o}} \frac{c \, \mathrm{d}t}{R(t)}$$
(4.46)

But the comoving distances are equal, $r_1 = r_2!$ Therefore

$$0 = \int_{t_{\text{emit}}}^{t_{\text{obs}}} \frac{c \, \mathrm{d}t}{R(t)} - \int_{t_{\text{emit}} + \Delta t_{\text{e}}}^{t_{\text{obs}} + \Delta t_{\text{o}}} \frac{c \, \mathrm{d}t}{R(t)}$$
(4.47)

$$= \int_{t_{\text{emit}}}^{t_{\text{emit}} + \Delta t_{\text{e}}} \frac{c \, \mathrm{d}t}{R(t)} - \int_{t_{\text{obs}}}^{t_{\text{obs}} + \Delta t_{\text{o}}} \frac{c \, \mathrm{d}t}{R(t)}$$
(4.48)

If $\Delta t \text{ small} \Longrightarrow R(t) \approx \text{const.:}$

$$=\frac{c\ \Delta t_{\rm e}}{R(t_{\rm emit})} - \frac{c\ \Delta t_{\rm o}}{R(t_{\rm obs})} \tag{4.49}$$

For a wave: $c\Delta t = \lambda$, such that

$$\frac{\lambda_{\text{emit}}}{R(t_{\text{emit}})} = \frac{\lambda_{\text{obs}}}{R(t_{\text{obs}})} \iff \frac{\lambda_{\text{emit}}}{\lambda_{\text{obs}}} = \frac{R(t_{\text{emit}})}{R(t_{\text{obs}})}$$
(4.50)

From this equation it is straightforward to derive Eq. (4.42).

Redshift, II

Outside of the local universe: Eq. (4.43) only valid interpretation of z.

 \implies It is common to interpret z as in special relativity:

$$1 + z = \sqrt{\frac{1 + v/c}{1 - v/c}}$$
 (4.51)

Redshift is due to expansion of space, not due to motion of galaxy.

What *is* true is that z is accumulation of many infinitesimal red-shifts à la Eq. (4.39), see, e.g., Peacock (1999).

Time Dilatation

Note the implication of Eq. (4.49) on the hand-out:

$$\frac{c \,\Delta t_{\rm e}}{R(t_{\rm emit})} = \frac{c \,\Delta t_{\rm o}}{R(t_{\rm obs})} \tag{4.49}$$

 \implies dt/R is constant:

$$\frac{\mathrm{d}t}{R(t)} = \mathrm{const.} \tag{4.52}$$

In other words:

$$\frac{\mathrm{d}t_{\mathrm{obs}}}{\mathrm{d}t_{\mathrm{emit}}} = \frac{R(t_{\mathrm{obs}})}{R(t_{\mathrm{emit}})} = 1 + z \qquad (4.53)$$

 \implies Time dilatation of events at large z.

This cosmological time dilatation has been observed in the light curves of supernova outbursts.

All other observables apart from z (e.g., number density N(z), luminosity distance d_L , etc.) require explicit knowledge of $R(t) \Longrightarrow$ Need to look at the dynamics of the universe.

UWarwick

Observational Quantities

Friedmann Equations, I

General relativistic approach: Insert metric into Einstein equation to obtain differential equation for R(t):

Einstein equation:

$$\underbrace{R_{\mu\nu} - \frac{1}{2} \mathscr{R} g_{\mu\nu}}_{G_{\mu\nu}} = \frac{8\pi G}{c^4} T_{\mu\nu} + \Lambda g_{\mu\nu} \qquad (4.54)$$

where

 $g_{\mu\nu}$: Metric tensor (d $s^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$) $R_{\mu\nu}$: Ricci tensor (function of $g_{\mu\nu}$)

 \mathscr{R} : Ricci scalar (function of $g_{\mu\nu}$)

 $G_{\mu\nu}$: Einstein tensor (function of $g_{\mu\nu}$)

 $T_{\mu\nu}$: Stress-energy tensor, describing curvature of space due to fields present (matter, radiation,...)

 $\Lambda \mbox{:} \mbox{Cosmological constant}$

```
\Longrightarrow Messy, but doable
```


Friedmann Equations, II

Here, Newtonian derivation of Friedmann equations: Dynamics of a mass element on the surface of sphere of density $\rho(t)$ and comoving radius d, i.e., proper radius $d \cdot R(t)$ (after McCrea & Milne, 1934).

4 - 23

Mass of sphere:

$$M = \frac{4\pi}{3} (dR)^3 \rho(t) = \frac{4\pi}{3} d^3 \rho_0 \text{ where } \rho(t) = \frac{\rho_0}{R(t)^3}$$
(4.55)

Force on mass element:

$$m\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}(d\,R(t)) = -\frac{GMm}{(dR(t))^{2}} = -\frac{4\pi G}{3}\frac{d\rho_{0}}{R^{2}(t)}\,m \qquad (4.56)$$

Canceling $m \cdot d$ gives momentum equation:

$$\ddot{R} = -\frac{4\pi G}{3}\frac{\rho_0}{R^2} = -\frac{4\pi G}{3}\rho(t)R(t)$$
(4.57)

From energy conservation, or from multiplying Eq. (4.57) with \dot{R} and integrating, we obtain the energy equation,

$$\frac{1}{2}\dot{R}^{2} = +\frac{4\pi G}{3}\frac{\rho_{0}}{R(t)} + \text{ const.}$$

$$= +\frac{4\pi G}{3}\rho(t)R^{2}(t) + \text{ const.}$$
(4.58)

where the constant can only be obtained from GR.

Dynamics

Warwick

Friedmann Equations, III

Problems with the Newtonian derivation:

- 1. Cloud is implicitly assumed to have $r_{cloud} < \infty$ (for $r_{cloud} \rightarrow \infty$ the force is undefined) \implies violates cosmological principle.
- 2. Particles move through space
 - $\implies v > c$ possible
 - \implies violates SRT.

Why do we get correct result?

 $GRT \longrightarrow$ Newton for small scales and mass densities; since universe is isotropic \implies scale invariance on Mpc scales \implies Newton sufficient (classical limit of GR).

(In fact, point 1 above *does* hold in GR: Birkhoff's theorem).

Friedmann Equations, IV

The exact GR derivation of Friedmanns equation gives:

$$\ddot{R} = -\frac{4\pi G}{3} R \left(\rho + \frac{3p}{c^2}\right) + \left[\frac{1}{3}\Lambda R\right]$$

$$\dot{R}^2 = +\frac{8\pi G\rho}{3} R^2 - kc^2 + \left[\frac{1}{3}\Lambda c^2 R^2\right]$$
(4.59)

Notes:

- 1. For k = 0: Eq. (4.59) \longrightarrow Eq. (4.58).
- 2. $k \in \{-1, 0, +1\}$ determines the curvature of space.
- 3. The density, ρ , includes the contribution of all different kinds of energy (remember mass-energy equivalence!).
- 4. There is energy associated with the vacuum, parameterized by the parameter Λ .

The evolution of the Hubble parameter is ($\Lambda = 0$):

$$\left(\frac{\dot{R}}{R}\right)^{2} = H^{2}(t) = \frac{8\pi G\rho}{3} - \frac{kc^{2}}{R^{2}}$$
(4.60)
UWarwick
Dynamics

The Critical Density, I

Solving Eq. (4.60) for k: $\frac{R^2}{c} \left(\frac{8\pi G}{3} \rho - H^2 \right) = k \quad (4.61)$

 \implies Sign of curvature parameter k only depends on density, ρ :

Defining

$$\rho_{\rm c} = \frac{3H^2}{8\pi G} \quad \text{and} \quad \Omega = \frac{\rho}{\rho_{\rm c}} \quad (4.62)$$

it is easy to see that:

$$\Omega > 1 \implies k > 0$$
 closed
 $\Omega = 1 \implies k = 0$ flat
 $\Omega < 1 \implies k < 0$ open

thus $\rho_{\rm c}$ is called the critical density.

For $\Omega \leq 1$ the universe will expand until ∞ , for $\Omega > 1$ we will see the "big crunch".

Current value of ρ_c : ~ 1.67 × 10⁻²⁴ g/cm³, (3...10 H-atoms/m³). Measured: $\Omega = 0.1 \dots 0.3$.

(but note that Λ can influence things ($\Omega_{\Lambda} = 0.7$)!).

UWarwick

Dynamics

The Critical Density, II

 Ω has a second order effect on the expansion: Taylor series of R(t) around $t = t_0$:

$$\frac{R(t)}{R(t_0)} = \frac{R(t_0)}{R(t_0)} + \frac{\dot{R}(t_0)}{R(t_0)} (t - t_0) + \frac{1}{2} \frac{\ddot{R}(t_0)}{R(t_0)} (t - t_0)^2$$
(4.63)

The Friedmann equation Eq. (4.57) can be written

$$\frac{\ddot{R}}{R} = -\frac{4\pi G}{3} \rho = -\frac{4\pi G}{3} \Omega \frac{3H^2}{8\pi G} = -\frac{\Omega H^2}{2}$$
(4.64)
Since $H(t) = \dot{R}/R$ (Eq. 4.38), Eq. (4.63) is

$$\frac{R(t)}{R(t_0)} = 1 + H_0 (t - t_0) - \frac{1}{2} \frac{\Omega_0}{2} H_0^2 (t - t_0)^2$$
 (4.65)
where $H_0 = H(t_0)$ and $\Omega_0 = \Omega(t_0)$.
The subscript 0 is often omitted in the case of Ω .
Often, Eq. (4.65) is written using the deceleration
parameter:

$$q := \frac{\Omega}{2} = -\frac{\ddot{R}(t_0)R(t_0)}{\dot{R}^2(t_0)}$$
(4.66)

JWarwick

Equation of state, I

For the evolution of the universe, need to look at three different kinds of equation of state: Matter: Normal particles get diluted by expansion of the universe:

$$\rho_{\rm m} \propto R^{-3}$$
(4.67)

Matter is also often called dust by cosmologists.

Radiation: The energy density of radiation decreases because of volume expansion and because of the cosmological redshift (Eq. 4.50: $\lambda_{\rm o}/\lambda_{\rm e} = \nu_{\rm e}/\nu_{\rm o} = R(t_{\rm o})/R(t_{\rm e})$) \Longrightarrow $\rho_{\rm r} \propto R^{-4}$ (4.68)

Vacuum: The vacuum energy density (= Λ) is independent of R:

$$ho_{
m v}={
m const.}$$
 (4.69)

Inserting these equations of state into the Friedmann equation and solving with the boundary condition R(t = 0) = 0 then gives a specific world model.

UWarwick Dynamics

Equation of state, II

Current scale factor is determined by H_0 and Ω_0 : Friedmann for $t = t_0$:

$$\dot{R}_0^2 - \frac{8\pi G}{3}\rho R_0^2 = -kc^2 \qquad (4.70)$$

Insert Ω and note $H_0 = \dot{R}_0/R_0$

$$\iff H_0^2 R_0^2 - H_0^2 \Omega_0 R_0^2 = -kc^2$$
 (4.71)

And therefore

$$R_0 = \frac{c}{H_0} \sqrt{\frac{k}{\Omega - 1}}$$
(4.72)

For $\Omega \longrightarrow 0$, $R_0 \longrightarrow c/H_0$, the Hubble length.

For $\Omega = 1$, R_0 is arbitrary.

We now have everything we need to solve the Friedmann equation and determine the evolution of the universe. Three cases: k = 0, +1, -1.

Dynamics

Warwick

k = 0, Matter dominated

For the matter dominated, flat case (the Einstein-de Sitter case), the Friedmann equation is

$$\dot{R}^2 - \frac{8\pi G}{3} \frac{\rho_0 R_0^3}{R^3} R^2 = 0$$
(4.73)

4-30

For k = 0: $\Omega = 1$ and

$$\frac{8\pi G\rho_0}{3} = \Omega_0 H_0^2 R_0^3 = H_0^2 R_0^3$$
(4.74)

Therefore, the Friedmann eq. is

$$\dot{R}^2 - \frac{H_0^2 R_0^3}{R} = 0 \implies \frac{\mathrm{d}R}{\mathrm{d}t} = H_0 R_0^{3/2} R^{-1/2}$$
 (4.75)

Separation of variables and setting $R(\mathbf{0}) = \mathbf{0}$,

$$\int_{0}^{R(t)} R^{1/2} dR = H_0 R_0^{3/2} t \quad \Longleftrightarrow \quad \frac{2}{3} R^{3/2} (t) = H_0 R_0^{3/2} t$$
(4.76)

Such that

$$R(t) = R_0 \left(\frac{3H_0}{2}t\right)^{2/3}$$
(4.77)

For k = 0, the universe expands until ∞ , its current age $(R(t_0) = R_0)$ is given by

$$t_0 = \frac{2}{3H_0}$$
(4.78)

Reminder: The Hubble-Time is $H_0^{-1} = 9.78 \, \text{Gyr}/h$.

Dynamics

Warwick

k = +1, Matter dominated, I

For the matter dominated, closed case, Friedmanns equation is

$$\dot{R}^{2} - \frac{8\pi G}{3} \frac{\rho_{0} R_{0}^{3}}{R} = -c^{2} \quad \Longleftrightarrow \quad \dot{R}^{2} - \frac{H_{0}^{2} R_{0}^{3} \Omega_{0}}{R} = -c^{2}$$
(4.79)

Inserting R_0 from Eq. (4.72) gives

$$\dot{R}^2 - \frac{H_0^2 c^3 \Omega_0}{H_0^3 (\Omega - 1)^{3/2}} \frac{1}{R} = -c^2$$
(4.80)

which is equivalent to

$$\frac{dR}{dt} = c \left(\frac{\xi}{R} - 1\right)^{1/2} \quad \text{with} \quad \xi = \frac{c}{H_0} \frac{\Omega_0}{(\Omega_0 - 1)^{3/2}} \quad (4.81)$$

With the boundary condition $R(\mathbf{0}) = \mathbf{0}$, separation of variables gives

$$ct = \int_{0}^{R(t)} \frac{\mathrm{d}R}{\left(\xi/R - 1\right)^{1/2}} = \int_{0}^{R(t)} \frac{\sqrt{R} \,\mathrm{d}R}{\left(\xi - R\right)^{1/2}} \qquad (4.82)$$

Integration by substitution gives

Warwick

Dynamics

$$R = \xi \sin^2 \frac{\theta}{2} = \frac{\xi}{2} (1 - \cos \theta)$$
$$\implies ct = \frac{\xi}{2} (\theta - \sin \theta) \quad (4.83)$$

The age of the universe, t_0 , is obtained by solving

$$R_{0} = \frac{c}{H_{0}(\Omega_{0} - 1)^{1/2}}$$
$$= \frac{\xi}{2}(1 - \cos\theta_{0}) = \frac{1}{2} \frac{c}{H_{0}} \frac{\Omega_{0}}{(\Omega_{0} - 1)^{3/2}} (1 - \cos\theta_{0}) \quad (4.84)$$

(remember Eq. 4.72!). Therefore

$$\cos \theta_0 = \frac{2 - \Omega_0}{\Omega_0} \quad \iff \quad \sin \theta_0 = \frac{2}{\Omega_0} \sqrt{\Omega_0 - 1} \quad (4.85)$$

Inserting this into Eq. (4.83) gives

$$t_0 = \frac{1}{2H_0} \frac{\Omega_0}{(\Omega_0 - 1)^{3/2}} \begin{bmatrix} \arccos\left(\frac{2 - \Omega_0}{\Omega_0}\right) - \frac{2}{\Omega_0}\sqrt{\Omega_0 - 1} \end{bmatrix}$$
(4.86)

Dynamics

Warwick

Since R is a cyclic function \implies The closed universe has a finite lifetime.

Max. expansion at $\theta = \pi$, with a maximum scale factor of

$$R_{\rm max} = \xi = \frac{c}{H_0} \frac{\Omega_0}{(\Omega_0 - 1)^{3/2}}$$
(4.87)

After that: contraction to the big crunch at $\theta = 2\pi$. \implies The lifetime of the closed universe is

$$t = \frac{\pi}{H_0} \frac{\Omega_0}{(\Omega_0 - 1)^{3/2}}$$
(4.88)

k = -1, Matter dominated, I

Finally, the matter dominated, open case. This case is very similar to the case of k = +1:

For k = -1, the Friedmann equation becomes

$$\frac{\mathrm{d}R}{\mathrm{d}t} = c\left(\frac{\zeta}{R} + 1\right)^{1/2} \tag{4.89}$$

where

$$\zeta = \frac{c}{H_0} \frac{\Omega_0}{(1 - \Omega_0)^{3/2}}$$
(4.90)

Separation of variables gives after a little bit of algebra

$$R = \frac{\zeta}{2} (\cosh \theta - 1)$$

$$ct = \frac{\zeta}{2} (\sinh \theta - 1)$$
(4.91)

where the integration was again performed by substitution.

Note: θ here has *nothing* to do with the coordinate angle θ !

To obtain the age of the universe, note that at the present time,

$$\cosh \theta_0 = \frac{2 - \Omega_0}{\Omega_0}$$

$$\sinh \theta_0 = \frac{2}{\Omega_0} \sqrt{1 - \Omega_0}$$
(4.92)

(identical derivation as that leading to Eq. 4.84) such that

$$t_{0} = \frac{1}{2H_{0}} \frac{\Omega_{0}}{(1 - \Omega_{0})^{3/2}} \cdot \left\{ \frac{2}{\Omega_{0}} \sqrt{1 - \Omega_{0}} - \ln\left(\frac{2 - \Omega_{0} + 2\sqrt{1 - \Omega_{0}}}{\Omega_{0}}\right) \right\}$$
(4.93)

Warwick

Dynamics

Summary

For the matter dominated case, our results from Eqs. (4.83), and (4.91) can be written with the functions S_k and C_k (Eqs. 4.24 and 4.25):

$$R = k\mathcal{R} \left(1 - C_k(\theta)\right)$$

$$ct = k\mathcal{R} \left(\theta - S_k(\theta)\right)$$
(4.94)

where

$$S_k(\theta) = \begin{cases} \sin \theta \\ \theta \\ \sinh \theta \end{cases} \text{ and } C_k(\theta) = \begin{cases} \cos \theta & \text{for } k = +1 \\ 1 & \text{for } k = 0 \\ \cosh \theta & \text{for } k = -1 \\ (4.24, 4.25) \end{cases}$$

Eq. (4.94) is called the cycloid solution. The characteristic radius, \mathcal{R} , is given by

$$\mathscr{R} = \frac{c}{H_0} \frac{\Omega_0/2}{\left(k\left(\Omega_0 - 1\right)\right)^{3/2}}$$
 (4.95)

(note typo in Eq. 3.42 of Peacock, 1999).

Notes:

- 1. Eq. (4.94) can also be derived as the result of the Newtonian collapse/expansion of a spherical mass distribution.
- 2. θ is called the development angle, it can be shown to be equal to the *conformal time* of Eq. (4.33).

Dynamics

Warwick

BIBLIOGRAPHY

Bibliography

- McCrea, W. H., & Milne, E. A., 1934, Quart. J. Math. (Oxford Series), 5, 73
- Silk, J., 1997, A Short History of the Universe, Scientific American Library 53, (New York: W. H. Freeman)