World Models

Structure

Observations: cosmological principle holds: The universe is homogeneous and isotropic.
\Longrightarrow Need theoretical framework obeying the cosmological principle.

Use combination of

- General Relativity
- Thermodynamics
- Quantum Mechanics

\Longrightarrow Complicated!

For 99\% of the work, the above points can be dealt with separately:

1. Define metric obeying cosmological principle.
2. Obtain equation for evolution of universe using Einstein field equations.
3. Use thermo/QM to obtain equation of state.
4. Solve equations.

GRT vs. Newton

Before we can start to think about universe: Brief introduction to assumptions of general relativity.
\Longrightarrow See theory lectures for the gory details, or check with the literature (Weinberg or MTW).

Assumptions of GRT:

- Space is 4-dimensional, might be curved
- Matter (=Energy) modifies space (Einstein field equation).
- Covariance: physical laws must be formulated in a coordinate-system independent way.
- Strong equivalence principle: There is no experiment by which one can distinguish between free falling coordinate systems and inertial systems.
- At each point, space is locally Minkowski (i.e., locally, SRT holds).
\Longrightarrow Understanding of geometry of space necessary to understand physics.

2D Metrics

Before describing the 4D geometry of the universe: first look at two-dimensional spaces (easier to visualize).

After Silk (1997, p. 107)

There are three classes of isotropic and homogeneous two-dimensional spaces:

- 2-sphere $\left(\mathscr{S}^{2}\right) \quad$ positively curved
- x-y-plane $\left(\mathbb{R}^{2}\right) \quad$ zero curvature
- hyperbolic plane $\left(\mathscr{H}^{2}\right)$ negatively curved (curvature $\approx \sum$ angles in triangle $>$, $=$, or $<180^{\circ}$)

We will now compute what the metric for these spaces looks like.

2D Metrics

The metric describes the local geometry of a space.
Differential distance, $\mathrm{d} s$, in Euclidean space, \mathbb{R}^{2} :

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2} \tag{4.1}
\end{equation*}
$$

The metric tensor, $g_{\mu \nu}$, is defined via

$$
\begin{equation*}
\mathrm{d} s^{2}=\sum_{\mu} \sum_{\nu} g_{\mu \nu} \mathbf{d} x^{\mu} \mathbf{d} x^{\nu}=: g_{\mu \nu} \mathbf{d} x^{\mu} \mathbf{d} x^{\nu} \tag{4.2}
\end{equation*}
$$

(Einstein's summation convention)
Thus, for the \mathbb{R}^{2},

$$
\begin{array}{ll}
g_{11}=1 & g_{12}=0 \\
g_{21}=0 & g_{22}=1 \tag{4.3}
\end{array}
$$

But: Other coordinate-systems possible!
Changing to polar coordinates r^{\prime}, θ, defined by

$$
\begin{equation*}
x_{1}=: r^{\prime} \cos \theta \quad \text { and } \quad x_{2}=: r^{\prime} \sin \theta \tag{4.4}
\end{equation*}
$$

it is easy to see that
$\mathrm{d} s^{2}=\mathrm{d} r^{\prime 2}+r^{\prime 2} \mathrm{~d} \theta^{2}$
substituting $r^{\prime}=R r$, (change of scale)

$$
\begin{equation*}
\mathrm{d} s^{2}=R\left\{\mathrm{~d} r^{2}+r^{2} \mathrm{~d} \theta^{2}\right\} \tag{4.6}
\end{equation*}
$$

2D Metrics

A more complicated case occurs if space is curved. Easiest case: surface of three-dimensional sphere (a two-sphere).

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=R^{2} \tag{4.7}
\end{equation*}
$$

Length element of \mathbb{R}^{3} :

$$
\mathrm{d} s^{2}=\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2}+\mathrm{d} x_{3}^{2}
$$

Eq. (4.7) gives

$$
x_{3}=\sqrt{R^{2}-x_{1}^{2}-x_{2}^{2}}
$$

After Kolb \& Turner (1990, Fig. 2.1)
such that

$$
\begin{equation*}
\mathrm{d} x_{3}=\frac{\partial x_{3}}{\partial x_{1}} \mathrm{~d} x_{1}+\frac{\partial x_{3}}{\partial x_{2}} \mathrm{~d} x_{2}=-\frac{x_{1} \mathrm{~d} x_{1}+x_{2} \mathrm{~d} x_{2}}{\sqrt{R^{2}-x_{1}^{2}-x_{2}^{2}}} \tag{4.8}
\end{equation*}
$$

Introduce again polar coordinates r^{\prime}, θ in x_{3}-plane:

$$
\begin{equation*}
x_{1}=: r^{\prime} \cos \theta \quad \text { and } \quad x_{2}=: r^{\prime} \sin \theta \tag{4.4}
\end{equation*}
$$

(note: r^{\prime}, θ only unique in upper or lower half-sphere)
The differentials are given by

$$
\begin{align*}
& \mathrm{d} x_{1}=\cos \theta \mathrm{d} r^{\prime}-r^{\prime} \sin \theta \mathrm{d} \theta \\
& \mathrm{~d} x_{2}=\sin \theta \mathrm{d} r^{\prime}+r^{\prime} \cos \theta \mathrm{d} \theta \tag{4.9}
\end{align*}
$$

2D Metrics

In cartesian coordinates, the length element on \mathscr{S}^{2} is

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2}+\frac{\left(x_{1} \mathrm{~d} x_{1}+x_{2} \mathrm{~d} x_{2}\right)^{2}}{R^{2}-x_{1}^{2}-x_{2}^{2}} \tag{4.10}
\end{equation*}
$$

inserting eq. (4.9) gives after some algebra

$$
\begin{equation*}
=r^{\prime 2} \mathrm{~d} \theta^{2}+\frac{R^{2}}{R^{2}-r^{\prime 2}} \mathrm{~d} r^{\prime 2} \tag{4.11}
\end{equation*}
$$

finally, defining $r=r^{\prime} / R$ (i.e., $0 \leq r \leq 1$) results in

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\frac{\mathrm{~d} r^{2}}{1-r^{2}}+r^{2} \mathrm{~d} \theta^{2}\right\} \tag{4.12}
\end{equation*}
$$

Alternatively, we can work in spherical coordinates on \mathscr{S}^{2}

$$
\begin{align*}
& x_{1}=R \sin \theta \cos \phi \\
& x_{2}=R \sin \theta \sin \phi \tag{4.13}\\
& x_{3}=R \cos \theta
\end{align*}
$$

$(\theta \in[0, \pi], \phi \in[0,2 \pi])$.
Going through the same steps as before, we obtain after some tedious algebra

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right\} \tag{4.14}
\end{equation*}
$$

2D Metrics

(Important) remarks:

1. The 2 -sphere has no edges, has no boundaries, but has still a finite volume, $V=4 \pi R^{2}$.
2. Expansion or contraction of sphere caused by variation of $R \Longrightarrow R$ determines the scale of volumes and distances on \mathscr{S}^{2}.

R is called the scale factor

3. Positions on \mathscr{S}^{2} are defined, e.g., by r and θ, independent on the value of R
r and θ are called comoving coordinates
4. Although the metrics Eq. (4.10), (4.12), and (4.14) look very different, they still describe the same space \Longrightarrow that's why physics should be covariant.

2D Metrics

The hyperbolic plane, \mathscr{H}^{2}, is defined by

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=-R^{2} \tag{4.15}
\end{equation*}
$$

If we work in Minkowski space, where

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2}-\mathrm{d} x_{3}^{2} \tag{4.16}
\end{equation*}
$$

then

$$
\begin{equation*}
=\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2}-\frac{\left(x_{1} \mathrm{~d} x_{1}+x_{2} \mathrm{~d} x_{2}\right)^{2}}{R^{2}+x_{1}^{2}+x_{2}^{2}} \tag{4.17}
\end{equation*}
$$

\Longrightarrow substitute $R \rightarrow i R$ (where $i=\sqrt{-1}$) to obtain same form as for sphere (eq. 4.11)! Therefore,

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\frac{\mathrm{~d} r^{2}}{1+r^{2}}+r^{2} \mathrm{~d} \theta^{2}\right\} \tag{4.18}
\end{equation*}
$$

2D Metrics

The analogy to spherical coordinates on the hyperbolic plane are given by

$$
\begin{aligned}
& x_{1}=R \sinh \theta \cos \phi \\
& x_{2}=R \sinh \theta \sin \phi \\
& x_{3}=R \cosh \theta
\end{aligned}
$$

$(\theta \in[-\infty,+\infty], \phi \in[0,2 \pi])$.
A session with Maple (see handout) will convince you that these coordinates give

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\mathrm{~d} \theta^{2}+\sinh ^{2} \theta \mathrm{~d} \phi^{2}\right\} \tag{4.20}
\end{equation*}
$$

Remark:

\mathscr{H}^{2} is unbound and has an infinite volume.

Transcript of Maple session to obtain Eq. (4.20):

2D Metrics

To summarize:
Sphere:

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\frac{\mathrm{~d} r^{2}}{1-r^{2}}+r^{2} \mathrm{~d} \theta^{2}\right\} \tag{4.12}
\end{equation*}
$$

Plane:

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\mathbf{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}\right\} \tag{4.6}
\end{equation*}
$$

Hyperbolic Plane:

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\frac{\mathrm{~d} r^{2}}{1+r^{2}}+r^{2} \mathrm{~d} \theta^{2}\right\} \tag{4.18}
\end{equation*}
$$

\Longrightarrow All three metrics can be written as

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\frac{\mathrm{~d} r^{2}}{1-k r^{2}}+r^{2} \mathrm{~d} \theta^{2}\right\} \tag{4.21}
\end{equation*}
$$

where k defines the geometry:

$$
k=\left\{\begin{align*}
+1 & \text { spherical } \tag{4.22}\\
0 & \text { planar } \\
-1 & \text { hyperbolic }
\end{align*}\right.
$$

2D Metrics

For "spherical coordinates" we found:
Sphere:

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right\} \tag{4.14}
\end{equation*}
$$

Plane:

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\mathrm{~d} \theta^{2}+\theta^{2} \mathrm{~d} \phi^{2}\right\} \tag{4.6}
\end{equation*}
$$

Hyperbolic plane:

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\mathrm{~d} \theta^{2}+\sinh ^{2} \theta \mathrm{~d} \phi^{2}\right\} \tag{4.20}
\end{equation*}
$$

\Longrightarrow All three metrics can be written as

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}\left\{\mathrm{~d} \theta^{2}+S_{k}^{2}(\theta) \mathrm{d} \phi^{2}\right\} \tag{4.23}
\end{equation*}
$$

where

$$
S_{k}(\theta)= \begin{cases}\sin \theta & \text { for } k=+1 \tag{4.24}\\ \theta & \text { for } k=0 \\ \sinh \theta & \text { for } k=-1\end{cases}
$$

We will also need the cos-like analogue

$$
C_{k}(\theta)=\sqrt{1-k S_{k}^{2}(\theta)}= \begin{cases}\cos \theta & \text { for } k=+1 \tag{4.25}\\ 1 & \text { for } k=0 \\ \cosh \theta & \text { for } k=-1\end{cases}
$$

Note that, compared to the earlier formulae, some coordinates have been renamed. This is confusing, but legal. . .

UWarwick

- Cosmological principle + expansion \Longrightarrow \exists freely expanding cosmical coordinate system.
- Observers =: fundamental observers
- Time =: cosmic time

This is the coordinate system in which the 3 K radiation is isotropic, clocks can be synchronized, e.g., by adjusting time to the local density of the universe.
\Longrightarrow Metric has temporal and spatial part.
This also follows directly from the equivalence principle.

- Homogeneity and isotropy \Longrightarrow spatial part is spherically symmetric:

$$
\begin{equation*}
\mathrm{d} \psi^{2}:=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathbf{d} \phi^{2} \tag{4.26}
\end{equation*}
$$

- Expansion: \exists scale factor, $R(t) \Longrightarrow$ measure distances using comoving coordinates.
\Longrightarrow metric looks like

$$
\mathrm{d} s^{2}=c^{2} \mathbf{d} t^{2}-R^{2}(t)\left[f^{2}(r) \mathbf{d} r^{2}+g^{2}(r) \mathbf{d} \psi^{2}\right]
$$

(4.27)
where $f(r)$ and $g(r)$ are arbitrary.

Metrics of the form of eq. (4.27) are called Robertson-Walker (RW) metrics (1935).
Previously studied by Friedmann and Lemaître...
One common choice is

$$
\begin{equation*}
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-R^{2}(t)\left[\mathrm{d} r^{2}+S_{k}^{2}(r) \mathrm{d} \psi^{2}\right] \tag{4.28}
\end{equation*}
$$

where
$R(t)$: scale factor, containing the physics
t : cosmic time
r, θ, ϕ : comoving coordinates
$S_{k}(r)$ was defined in Eq. (4.24).
Remark: θ and ϕ describe directions on sky, as seen from the arbitrary center of the coordinate system (=us), r can be interpreted as a radial coordinate.

The RW metric defines an universal coordinate system tied to expansion of space:

Scale factor $R(t)$ describes evolution of universe.

- d is called the comoving distance.
- $D(t):=d \cdot R(t)$ is called the proper distance, (note that R is unitless, i.e., d and $d R(t)$ are measured in Mpc)
"World model": $R(t)$ from GRT plus assumptions about physics.

Other forms of the RW metric are also used:

1. Substitution $S_{k}(r) \longrightarrow r$ gives

$$
\begin{equation*}
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-R^{2}(t)\left\{\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2} \mathrm{~d} \psi^{2}\right\} \tag{4.29}
\end{equation*}
$$

(i.e., other definition of comoving radius r).
2. A metric with a dimensionless scale factor,

$$
\begin{equation*}
a(t):=\frac{R(t)}{R\left(t_{0}\right)}=\frac{R(t)}{R_{0}} \tag{4.30}
\end{equation*}
$$

(where $t_{0}=$ today, i.e., $a\left(t_{0}\right)=1$), gives

$$
\begin{equation*}
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-a^{2}(t)\left\{\mathrm{d} r^{2}+\frac{S_{k}^{2}\left(R_{0} r\right)}{R_{0}^{2}} \mathrm{~d} \psi^{2}\right\} \tag{4.31}
\end{equation*}
$$

3. Using $a(t)$ and the substitution $S_{k}(r) \longrightarrow r$ is also possible:

$$
\begin{equation*}
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-a^{2}(t)\left\{\frac{\mathrm{d} r^{2}}{1-k \cdot\left(R_{0} r\right)^{2}}+r^{2} \mathrm{~d} \psi^{2}\right\} \tag{4.32}
\end{equation*}
$$

The units of $R_{0} r$ are $\mathrm{Mpc} \Longrightarrow$ Used for observations!
4. Replace cosmic time, t, by conformal time, $\mathrm{d} \eta=\mathrm{d} t / R(t) \Longrightarrow$ conformal metric,

$$
\begin{equation*}
\mathrm{d} s^{2}=R^{2}(\eta)\left\{\mathrm{d} \eta^{2}-\frac{\mathrm{d} r^{2}}{1-k r}-r^{2} \mathrm{~d} \psi^{2}\right\} \tag{4.33}
\end{equation*}
$$

Theoretical importance of this metric: For $k=0$, i.e., a flat space, the RW metric $=$ Minkowski line element \times $R^{2}(\eta) \Longrightarrow$ Equivalence principle!
5. Finally, the metric can also be written in the isotropic form,

$$
\begin{equation*}
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-\frac{R(t)}{1+(k / 4) r^{2}}\left\{\mathrm{~d} r^{2}+r^{2} \mathrm{~d} \psi^{2}\right\} \tag{4.34}
\end{equation*}
$$

Here, the term in $\{\ldots\}$ is just the line element of a 3d-sphere \Longrightarrow isotropy!

Note: There are as many notations as authors, e.g., some use $a(t)$ where we use $R(t)$, etc. \Longrightarrow Be careful!
Note 2: Local homogeneity and isotropy (i.e., within a Hubble radius, $r=c / H_{0}$), do not imply global homogeneity and isotropy \Longrightarrow Cosmologies with a non-trivial topology are possible (e.g., also with more dimensions...).

Hubble's Law

Hubble's Law follows from the variation of $R(t)$:

Small scales \Longrightarrow Euclidean geometry
Proper distance between two observers:

$$
\begin{equation*}
D(t)=d \cdot R(t) \tag{4.35}
\end{equation*}
$$

where d : comoving distance.
Expansion \Longrightarrow proper separation changes:

$$
\begin{equation*}
\frac{\Delta D}{\Delta t}=\frac{R(t+\Delta t) d-R(t) d}{\Delta t} \tag{4.36}
\end{equation*}
$$

Thus, for $\Delta t \rightarrow 0$,

$$
\begin{equation*}
v=\frac{\mathrm{d} D}{\mathrm{~d} t}=\dot{R} d=\frac{\dot{R}}{R} D=: H D \tag{4.37}
\end{equation*}
$$

\Longrightarrow Identify local Hubble "constant" as

$$
\begin{equation*}
H=\frac{\dot{R}}{R}=\dot{a}(t) \tag{4.38}
\end{equation*}
$$

($a(t)$ from Eq. 4.30, a (today) $=1$)
Since $R=R(t) \Longrightarrow H$ is time-dependent!
For small v, interpreted classically the red-shift is

$$
\begin{equation*}
z=1+\frac{v}{c} \quad \Longrightarrow \quad z-1=\frac{H d}{c} \tag{4.39}
\end{equation*}
$$

The cosmological redshift is a consequence of

the expansion of the universe:

The comoving distance is constant, thus in terms of the proper distance:

$$
\begin{equation*}
d=\frac{D(t=\text { today })}{R(t=\text { today })}=\frac{D(t)}{R(t)}=\text { const. } \tag{4.40}
\end{equation*}
$$

Set $a(t)=R(t) / R(t=$ today $)$, then eq. (4.40) implies

$$
\begin{equation*}
\lambda_{\mathrm{obs}}=\frac{\lambda_{\mathrm{emit}}}{a_{\mathrm{emit}}} \tag{4.41}
\end{equation*}
$$

($\lambda_{\text {obs }}$: observed wavelength, $\lambda_{\text {emit }}$: emitted wavelength)
Thus the observed redshift is

$$
\begin{equation*}
z=\frac{\lambda_{\mathrm{obs}}-\lambda_{\mathrm{emit}}}{\lambda_{\mathrm{emit}}}=\frac{\lambda_{\mathrm{obs}}}{\lambda_{\mathrm{emit}}}-1 \tag{4.42}
\end{equation*}
$$

or

$$
\begin{equation*}
1+z=\frac{1}{a_{\mathrm{emit}}}=\frac{R(t=\text { today })}{R(t)} \tag{4.43}
\end{equation*}
$$

Light emitted at $z=1$ was emitted when the universe was half as big as today!
z : measure for relative size of universe at time the observed light was emitted.
Because of $z=\nu_{\text {emit }} / \nu_{\text {obs }}$,

$$
\begin{equation*}
\frac{\nu_{\mathrm{emit}}}{\nu_{\mathrm{obs}}}=\frac{1}{a_{\mathrm{emit}}} \tag{4.44}
\end{equation*}
$$

An alternative derivation of the cosmological redshift follows directly from general relativity, using the basic GR fact that for photons $\mathrm{d} s^{2}=0$. Inserting this into the metric, and assuming without loss of generality that $\mathbf{d} \psi^{2}=0$, one finds

$$
\begin{equation*}
0=c^{2} \mathrm{~d} t^{2}-R^{2}(t) \mathrm{d} r^{2} \quad \Longrightarrow \quad \mathrm{~d} r= \pm \frac{c \mathrm{~d} t}{R(t)} \tag{4.45}
\end{equation*}
$$

Since photons travel forward, we choose the + -sign.

The comoving distance traveled by photons emitted at cosmic times $t_{\text {emit }}$ and $t_{\text {emit }}+\Delta t_{\mathrm{e}}$ is

$$
\begin{equation*}
r_{1}=\int_{t_{\mathrm{emit}}}^{t_{\mathrm{obs}}} \frac{c \mathrm{~d} t}{R(t)} \quad \text { and } \quad r_{2}=\int_{t_{\mathrm{emit}}+\Delta t_{\mathrm{e}}}^{t_{\mathrm{obs}}+\Delta t_{\mathrm{o}}} \frac{c \mathrm{~d} t}{R(t)} \tag{4.46}
\end{equation*}
$$

But the comoving distances are equal, $r_{1}=r_{2}$! Therefore

$$
\begin{align*}
0 & =\int_{t_{\mathrm{emit}}}^{t_{\mathrm{obs}}} \frac{c \mathrm{~d} t}{R(t)}-\int_{t_{\mathrm{emit}}+\Delta t_{\mathrm{e}}}^{t_{\mathrm{obs}}+\Delta t_{\mathrm{o}}} \frac{c \mathrm{~d} t}{R(t)} \tag{4.47}\\
& =\int_{t_{\mathrm{emit}}}^{t_{\mathrm{emit}}+\Delta t_{\mathrm{e}}} \frac{c \mathrm{~d} t}{R(t)}-\int_{t_{\mathrm{obs}}}^{t_{\mathrm{obs}}+\Delta t_{\mathrm{o}}} \frac{c \mathrm{~d} t}{R(t)} \tag{4.48}
\end{align*}
$$

If Δt small $\Longrightarrow R(t) \approx$ const.:

$$
\begin{equation*}
=\frac{c \Delta t_{\mathrm{e}}}{R\left(t_{\mathrm{emit}}\right)}-\frac{c \Delta t_{\mathrm{o}}}{R\left(t_{\mathrm{obs}}\right)} \tag{4.49}
\end{equation*}
$$

For a wave: $c \Delta t=\lambda$, such that

$$
\begin{equation*}
\frac{\lambda_{\mathrm{emit}}}{R\left(t_{\mathrm{emit}}\right)}=\frac{\lambda_{\mathrm{obs}}}{R\left(t_{\mathrm{obs}}\right)} \Longleftrightarrow \frac{\lambda_{\mathrm{emit}}}{\lambda_{\mathrm{obs}}}=\frac{R\left(t_{\mathrm{emit}}\right)}{R\left(t_{\mathrm{obs}}\right)} \tag{4.50}
\end{equation*}
$$

From this equation it is straightforward to derive Eq. (4.42).

Outside of the local universe: Eq. (4.43) only valid interpretation of z.
\Longrightarrow It is common to interpret z as in special relativity:

$$
\begin{equation*}
1+z=\frac{\sqrt[4]{v+v}}{\frac{v}{1-v / c}} \tag{4.51}
\end{equation*}
$$

Redshift is due to expansion of space, not due to motion of galaxy.
What is true is that z is accumulation of many infinitesimal red-shifts à la Eq. (4.39), see, e.g., Peacock (1999).

Time Dilatation

Note the implication of Eq. (4.49) on the hand-out:

$$
\begin{equation*}
\frac{c \Delta t_{\mathrm{e}}}{R\left(t_{\mathrm{emit}}\right)}=\frac{c \Delta t_{\mathrm{o}}}{R\left(t_{\mathrm{obs}}\right)} \tag{4.49}
\end{equation*}
$$

$\Longrightarrow \mathrm{d} t / R$ is constant:

$$
\begin{equation*}
\frac{\mathrm{d} t}{R(t)}=\text { const. } \tag{4.52}
\end{equation*}
$$

In other words:

$$
\begin{equation*}
\frac{\mathrm{d} t_{\mathrm{obs}}}{\mathrm{~d} t_{\mathrm{emit}}}=\frac{R\left(t_{\mathrm{obs}}\right)}{R\left(t_{\mathrm{emit}}\right)}=1+z \tag{4.53}
\end{equation*}
$$

\Longrightarrow Time dilatation of events at large z.
This cosmological time dilatation has been observed in the light curves of supernova outbursts.

All other observables apart from z (e.g., number density $N(z)$, luminosity distance d_{L}, etc.) require explicit knowledge of $R(t) \Longrightarrow$ Need to look at the dynamics of the universe.

4-22

Friedmann Equations, I

General relativistic approach: Insert metric into Einstein equation to obtain differential equation for $R(t)$:
Einstein equation:

$$
\begin{equation*}
\underbrace{R_{\mu \nu}-\frac{1}{2} \mathscr{R} g_{\mu \nu}}_{G_{\mu \nu}}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}+\Lambda g_{\mu \nu} \tag{4.54}
\end{equation*}
$$

where
$g_{\mu \nu}$: Metric tensor ($\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$)
$R_{\mu \nu}$: Ricci tensor (function of $g_{\mu \nu}$)
\mathscr{R} : Ricci scalar (function of $g_{\mu \nu}$)
$G_{\mu \nu}$: Einstein tensor (function of $g_{\mu \nu}$)
$T_{\mu \nu}$: Stress-energy tensor, describing curvature of space due to fields present (matter, radiation,...)
Λ : Cosmological constant
\Longrightarrow Messy, but doable

Friedmann Equations, II

Here, Newtonian derivation of Friedmann equations: Dynamics of a mass element on the surface of sphere of density $\rho(t)$ and comoving radius d, i.e., proper radius $d \cdot R(t)$ (after McCrea \& Milne, 1934).
Mass of sphere:

$$
\begin{equation*}
M=\frac{4 \pi}{3}(d R)^{3} \rho(t)=\frac{4 \pi}{3} d^{3} \rho_{0} \text { where } \rho(t)=\frac{\rho_{0}}{R(t)^{3}} \tag{4.55}
\end{equation*}
$$

Force on mass element:

$$
\begin{equation*}
m \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}(d R(t))=-\frac{G M m}{(d R(t))^{2}}=-\frac{4 \pi G}{3} \frac{d \rho_{0}}{R^{2}(t)} m \tag{4.56}
\end{equation*}
$$

Canceling $m \cdot d$ gives momentum equation:

$$
\begin{equation*}
\ddot{R}=-\frac{4 \pi G}{3} \frac{\rho_{0}}{R^{2}}=-\frac{4 \pi G}{3} \rho(t) R(t) \tag{4.57}
\end{equation*}
$$

From energy conservation, or from multiplying Eq. (4.57) with \dot{R} and integrating, we obtain the energy equation,

$$
\begin{align*}
\frac{1}{2} \dot{R}^{2} & =+\frac{4 \pi G}{3} \frac{\rho_{0}}{R(t)}+\text { const. } \tag{4.58}\\
& =+\frac{4 \pi G}{3} \rho(t) R^{2}(t)+\text { const. }
\end{align*}
$$

where the constant can only be obtained from GR.

Problems with the Newtonian derivation:

1. Cloud is implicitly assumed to have $r_{\text {cloud }}<\infty$ (for $r_{\text {cloud }} \rightarrow \infty$ the force is undefined) \Longrightarrow violates cosmological principle.
2. Particles move through space
$\Longrightarrow v>c$ possible
\Longrightarrow violates SRT.
Why do we get correct result?
GRT \longrightarrow Newton for small scales and mass densities; since universe is isotropic \Longrightarrow scale invariance on Mpc scales \Longrightarrow Newton sufficient (classical limit of GR).
(In fact, point 1 above does hold in GR: Birkhoff's theorem).

Friedmann Equations, IV

The exact GR derivation of Friedmanns equation gives:

$$
\begin{align*}
\ddot{R} & =-\frac{4 \pi G}{3} R\left(\rho+\frac{3 p}{c^{2}}\right)+\left[\frac{1}{3} \Lambda R\right] \tag{4.59}\\
\dot{R}^{2} & =+\frac{8 \pi G \rho}{3} R^{2}-k c^{2}+\left[\frac{1}{3} \Lambda c^{2} R^{2}\right]
\end{align*}
$$

Notes:

1. For $k=0$: Eq. (4.59) \longrightarrow Eq. (4.58).
2. $k \in\{-1,0,+1\}$ determines the curvature of space.
3. The density, ρ, includes the contribution of all different kinds of energy (remember mass-energy equivalence!).
4. There is energy associated with the vacuum, parameterized by the parameter Λ.
The evolution of the Hubble parameter is $(\Lambda=0)$:

$$
\begin{equation*}
\left(\frac{\dot{R}}{R}\right)^{2}=H^{2}(t)=\frac{8 \pi G \rho}{3}-\frac{k c^{2}}{R^{2}} \tag{4.60}
\end{equation*}
$$

Solving Eq. (4.60) for k :

$$
\begin{equation*}
\frac{R^{2}}{c}\left(\frac{8 \pi G}{3} \rho-H^{2}\right)=k \tag{4.61}
\end{equation*}
$$

\Longrightarrow Sign of curvature parameter k only depends on density, ρ :
Defining

$$
\begin{equation*}
\rho_{\mathrm{c}}=\frac{3 H^{2}}{8 \pi G} \quad \text { and } \quad \Omega=\frac{\rho}{\rho_{\mathrm{c}}} \tag{4.62}
\end{equation*}
$$

it is easy to see that:

$$
\begin{aligned}
& \Omega>1 \Longrightarrow k>0 \text { closed } \\
& \Omega=1 \Longrightarrow k=0 \quad \text { flat } \\
& \Omega<1 \Longrightarrow k<0 \text { open }
\end{aligned}
$$

thus ρ_{c} is called the critical density.
For $\Omega \leq 1$ the universe will expand until ∞, for $\Omega>1$ we will see the "big crunch".

Current value of $\rho_{\mathrm{c}}: \sim 1.67 \times 10^{-24} \mathrm{~g} / \mathrm{cm}^{3}$,
($3 \ldots 10 \mathrm{H}$-atoms $/ \mathrm{m}^{3}$).
Measured: $\Omega=0.1 \ldots 0.3$.
(but note that Λ can influence things ($\Omega_{\Lambda}=0.7$)!').
Ω has a second order effect on the expansion:
Taylor series of $R(t)$ around $t=t_{0}$:
$\frac{R(t)}{R\left(t_{0}\right)}=\frac{R\left(t_{0}\right)}{R\left(t_{0}\right)}+\frac{\dot{R}\left(t_{0}\right)}{R\left(t_{0}\right)}\left(t-t_{0}\right)+\frac{1}{2} \frac{\ddot{R}\left(t_{0}\right)}{R\left(t_{0}\right)}\left(t-t_{0}\right)^{2}$
(4.63)

The Friedmann equation Eq. (4.57) can be written

$$
\frac{\ddot{R}}{R}=-\frac{4 \pi G}{3} \rho=-\frac{4 \pi G}{3} \Omega \frac{3 H^{2}}{8 \pi G}=-\frac{\Omega H^{2}}{2}
$$

(4.64)

Since $H(t)=\dot{R} / R$ (Eq. 4.38), Eq. (4.63) is

$$
\begin{equation*}
\frac{R(t)}{R\left(t_{0}\right)}=1+H_{0}\left(t-t_{0}\right)-\frac{1}{2} \frac{\Omega_{0}}{2} H_{0}^{2}\left(t-t_{0}\right)^{2} \tag{4.65}
\end{equation*}
$$

where $H_{0}=H\left(t_{0}\right)$ and $\Omega_{0}=\Omega\left(t_{0}\right)$.
The subscript 0 is often omitted in the case of Ω.
Often, Eq. (4.65) is written using the deceleration parameter:

$$
\begin{equation*}
q:=\frac{\Omega}{2}=-\frac{\ddot{R}\left(t_{0}\right) R\left(t_{0}\right)}{\dot{R}^{2}\left(t_{0}\right)} \tag{4.66}
\end{equation*}
$$

Equation of state, I

For the evolution of the universe, need to look at three different kinds of equation of state:
Matter: Normal particles get diluted by expansion of the universe:

$$
\begin{equation*}
\rho_{\mathrm{m}} \propto R^{-3} \tag{4.67}
\end{equation*}
$$

Matter is also often called dust by cosmologists.

Radiation: The energy density of radiation

 decreases because of volume expansion and because of the cosmological redshift(Eq. 4.50: $\left.\lambda_{o} / \lambda_{\mathrm{e}}=\nu_{\mathrm{e}} / \nu_{\mathrm{o}}=R\left(t_{\mathrm{o}}\right) / R\left(t_{\mathrm{e}}\right)\right) \Longrightarrow$

$$
\begin{equation*}
\rho_{\mathrm{r}} \propto R^{-4} \tag{4.68}
\end{equation*}
$$

Vacuum: The vacuum energy density $(=\Lambda)$ is independent of R :

$$
\begin{equation*}
\rho_{\mathrm{v}}=\text { const. } \tag{4.69}
\end{equation*}
$$

Inserting these equations of state into the Friedmann equation and solving with the boundary condition $R(t=0)=0$ then gives a specific world model.

Equation of state, II

Current scale factor is determined by H_{0} and Ω_{0} : Friedmann for $t=t_{0}$:

$$
\begin{equation*}
\dot{R}_{0}^{2}-\frac{8 \pi G}{3} \rho R_{0}^{2}=-k c^{2} \tag{4.70}
\end{equation*}
$$

Insert Ω and note $H_{0}=\dot{R}_{0} / R_{0}$

$$
\begin{equation*}
\Longleftrightarrow H_{0}^{2} R_{0}^{2}-H_{0}^{2} \Omega_{0} R_{0}^{2}=-k c^{2} \tag{4.71}
\end{equation*}
$$

And therefore

$$
\begin{equation*}
R_{0}=\frac{c}{H_{0}} \sqrt{\frac{k}{\Omega-1}} \tag{4.72}
\end{equation*}
$$

For $\Omega \longrightarrow 0, R_{0} \longrightarrow c / H_{0}$, the Hubble length.
For $\Omega=1, R_{0}$ is arbitrary.

We now have everything we need to solve the Friedmann equation and determine the evolution of the universe. Three cases: $k=0,+1,-1$.

$k=0$, Matter dominated

For the matter dominated, flat case (the Einstein-de Sitter case), the Friedmann equation is

$$
\begin{equation*}
\dot{R}^{2}-\frac{8 \pi G}{3} \frac{\rho_{0} R_{0}^{3}}{R^{3}} R^{2}=0 \tag{4.73}
\end{equation*}
$$

For $k=0: \Omega=1$ and

$$
\begin{equation*}
\frac{8 \pi G \rho_{0}}{3}=\Omega_{0} H_{0}^{2} R_{0}^{3}=H_{0}^{2} R_{0}^{3} \tag{4.74}
\end{equation*}
$$

Therefore, the Friedmann eq. is

$$
\begin{equation*}
\dot{R}^{2}-\frac{H_{0}^{2} R_{0}^{3}}{R}=0 \Longrightarrow \frac{\mathrm{~d} R}{\mathrm{~d} t}=H_{0} R_{0}^{3 / 2} R^{-1 / 2} \tag{4.75}
\end{equation*}
$$

Separation of variables and setting $R(0)=0$,

$$
\begin{equation*}
\int_{0}^{R(t)} R^{1 / 2} \mathrm{~d} R=H_{0} R_{0}^{3 / 2} t \quad \Longleftrightarrow \quad \frac{2}{3} R^{3 / 2}(t)=H_{0} R_{0}^{3 / 2} t \tag{4.76}
\end{equation*}
$$

Such that

$$
\begin{equation*}
R(t)=R_{0}\left(\frac{3 H_{0}}{2} t\right)^{2 / 3} \tag{4.77}
\end{equation*}
$$

For $k=0$, the universe expands until ∞, its current age ($R\left(t_{0}\right)=R_{0}$) is given by

$$
\begin{equation*}
t_{0}=\frac{2}{3 H_{0}} \tag{4.78}
\end{equation*}
$$

Reminder: The Hubble-Time is $H_{0}^{-1}=9.78 \mathrm{Gyr} / h$.

For the matter dominated, closed case, Friedmanns equation is

$$
\begin{equation*}
\dot{R}^{2}-\frac{8 \pi G}{3} \frac{\rho_{0} R_{0}^{3}}{R}=-c^{2} \quad \Longleftrightarrow \quad \dot{R}^{2}-\frac{H_{0}^{2} R_{0}^{3} \Omega_{0}}{R}=-c^{2} \tag{4.79}
\end{equation*}
$$

Inserting R_{0} from Eq. (4.72) gives

$$
\begin{equation*}
\dot{R}^{2}-\frac{H_{0}^{2} c^{3} \Omega_{0}}{H_{0}^{3}(\Omega-1)^{3 / 2}} \frac{1}{R}=-c^{2} \tag{4.80}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{\mathrm{d} R}{\mathrm{~d} t}=c\left(\frac{\xi}{R}-1\right)^{1 / 2} \quad \text { with } \quad \xi=\frac{c}{H_{0}} \frac{\Omega_{0}}{\left(\Omega_{0}-1\right)^{3 / 2}} \tag{4.81}
\end{equation*}
$$

With the boundary condition $R(0)=0$, separation of variables gives

$$
\begin{equation*}
c t=\int_{0}^{R(t)} \frac{\mathrm{d} R}{(\xi / R-1)^{1 / 2}}=\int_{0}^{R(t)} \frac{\sqrt{R} \mathrm{~d} R}{(\xi-R)^{1 / 2}} \tag{4.82}
\end{equation*}
$$

Integration by substitution gives

$$
\begin{align*}
R=\xi \sin ^{2} \frac{\theta}{2}=\frac{\xi}{2}(1-\cos \theta) & \\
& \Longrightarrow \quad c t=\frac{\xi}{2}(\theta-\sin \theta) \tag{4.83}
\end{align*}
$$

The age of the universe, t_{0}, is obtained by solving

$$
\begin{align*}
R_{0} & =\frac{c}{H_{0}\left(\Omega_{0}-1\right)^{1 / 2}} \\
& =\frac{\xi}{2}\left(1-\cos \theta_{0}\right)=\frac{1}{2} \frac{c}{H_{0}} \frac{\Omega_{0}}{\left(\Omega_{0}-1\right)^{3 / 2}}\left(1-\cos \theta_{0}\right) \tag{4.84}
\end{align*}
$$

(remember Eq. 4.72!). Therefore

$$
\begin{equation*}
\cos \theta_{0}=\frac{2-\Omega_{0}}{\Omega_{0}} \Longleftrightarrow \sin \theta_{0}=\frac{2}{\Omega_{0}} \sqrt{\Omega_{0}-1} \tag{4.85}
\end{equation*}
$$

Inserting this into Eq. (4.83) gives

$$
\begin{equation*}
t_{0}=\frac{1}{2 H_{0}} \frac{\Omega_{0}}{\left(\Omega_{0}-1\right)^{3 / 2}}\left[\arccos \left(\frac{2-\Omega_{0}}{\Omega_{0}}\right)-\frac{2}{\Omega_{0}} \sqrt{\Omega_{0}-1}\right] \tag{4.86}
\end{equation*}
$$

Since R is a cyclic function \Longrightarrow The closed universe has a finite lifetime.
Max. expansion at $\theta=\pi$, with a maximum scale factor of

$$
\begin{equation*}
R_{\max }=\xi=\frac{c}{H_{0}} \frac{\Omega_{0}}{\left(\Omega_{0}-1\right)^{3 / 2}} \tag{4.87}
\end{equation*}
$$

After that: contraction to the big crunch at $\theta=2 \pi$.
\Longrightarrow The lifetime of the closed universe is

$$
\begin{equation*}
t=\frac{\pi}{H_{0}} \frac{\Omega_{0}}{\left(\Omega_{0}-1\right)^{3 / 2}} \tag{4.88}
\end{equation*}
$$

Finally, the matter dominated, open case. This case is very similar to the case of $k=+1$:
For $k=-1$, the Friedmann equation becomes

$$
\begin{equation*}
\frac{\mathrm{d} R}{\mathrm{~d} t}=c\left(\frac{\zeta}{R}+1\right)^{1 / 2} \tag{4.89}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta=\frac{c}{H_{0}} \frac{\Omega_{0}}{\left(1-\Omega_{0}\right)^{3 / 2}} \tag{4.90}
\end{equation*}
$$

Separation of variables gives after a little bit of algebra

$$
\begin{align*}
& R=\frac{\zeta}{2}(\cosh \theta-1) \\
& c t=\frac{\zeta}{2}(\sinh \theta-1) \tag{4.91}
\end{align*}
$$

where the integration was again performed by substitution. Note: θ here has nothing to do with the coordinate angle θ !
$k=-1$, Matter dominated, II

Ω
To obtain the age of the universe, note that at the present time,

$$
\begin{align*}
& \cosh \theta_{0}=\frac{2-\Omega_{0}}{\Omega_{0}} \tag{4.92}\\
& \sinh \theta_{0}=\frac{2}{\Omega_{0}} \sqrt{1-\Omega_{0}}
\end{align*}
$$

(identical derivation as that leading to Eq. 4.84) such that

$$
\begin{align*}
t_{0}= & \frac{1}{2 H_{0}} \frac{\Omega_{0}}{\left(1-\Omega_{0}\right)^{3 / 2}} \cdot \\
& \cdot\left\{\frac{2}{\Omega_{0}} \sqrt{1-\Omega_{0}}-\ln \left(\frac{2-\Omega_{0}+2 \sqrt{1-\Omega_{0}}}{\Omega_{0}}\right)\right\} \tag{4.93}
\end{align*}
$$

For the matter dominated case, our results from Eqs. (4.83), and (4.91) can be written with the functions S_{k} and C_{k}
(Eqs. 4.24 and 4.25):

$$
\begin{align*}
& R=k \mathscr{R}\left(1-C_{k}(\theta)\right) \\
& c t=k \mathscr{R}\left(\theta-S_{k}(\theta)\right) \tag{4.94}
\end{align*}
$$

where

$$
S_{k}(\theta)= \begin{cases}\sin \theta \tag{4.24,4.25}\\
\theta & \text { and } \quad C_{k}(\theta)=\left\{\begin{array}{ll}
\cos \theta & \text { for } k=+1 \\
1 & \text { for } k=0 \\
\sinh \theta & \cosh \theta
\end{array} \text { for } k=-1\right.\end{cases}
$$

Eq. (4.94) is called the cycloid solution.
The characteristic radius, \mathscr{R}, is given by

$$
\begin{equation*}
\mathscr{R}=\frac{c}{H_{0}} \frac{\Omega_{0} / 2}{\left(k\left(\Omega_{0}-1\right)\right)^{3 / 2}} \tag{4.95}
\end{equation*}
$$

(note typo in Eq. 3.42 of Peacock, 1999).

Notes:

1. Eq. (4.94) can also be derived as the result of the Newtonian collapse/expansion of a spherical mass distribution.
2. θ is called the development angle, it can be shown to be equal to the conformal time of Eq. (4.33).

Bibliography

McCrea, W. H., \& Milne, E. A., 1934, Quart. J. Math. (Oxford Series), 5, 73
Silk, J., 1997, A Short History of the Universe, Scientific American Library 53, (New York: W. H. Freeman)

