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~ Structure

Observations: cosmological principle holds: The

universe is homogeneous and isotropic.

—> Need theoretical framework obeying the
cosmological principle.

Use combination of
* General Relativity

* Thermodynamics
* Quantum Mechanics
—> Complicated!

For 99% of the work, the above points can be
dealt with separately:
1. Define metric obeying cosmological
principle.
2. Obtain equation for evolution of universe
using Einstein field equations.
3. Use thermo/QM to obtain equation of state.
4. Solve equations.

~N
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~ GRT vs. Newton

Before we can start to think about universe: Brief

Introduction to assumptions of general relativity.

—> See theory lectures for the gory details, or check with the
literature (Weinberg or MTW).

Assumptions of GRT:

e Space Is 4-dimensional, might be curved

e Matter (=Energy) modifies space (Einstein
field equation).

e Covariance: physical laws must be formulated
In a coordinate-system independent way.

e Strong equivalence principle: There is no
experiment by which one can distinguish
between free falling coordinate systems and
Inertial systems.

* At each point, space is locally Minkowski (i.e.,
locally, SRT holds).

—> Understanding of geometry of space
necessary to understand physics.

~N
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~ 2D Metrics ™\

Before describing the 4D geometry of the
universe: first look at two-dimensional spaces

(easier to visualize).
4 @

There are three classes of isotropic and
homogeneous two-dimensional spaces:

After Silk (1997, p. 107)

e 2-sphere (.?) positively curved
o z-y-plane (R?) zero curvature
e hyperbolic plane (%) negatively curved

(curvature = ) angles in triangle >, =, or < 180°)

We will now compute what the metric for these
spaces looks like.

- [OWarwick] /
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Differential distance, ds, in Euclidean space, R?:

The metric tensor, g,,,, is defined via

(Einstein’s summation convention)
Thus, for the R?,

(4.3)
g21=0 g =1
But: Other coordinate-systems possible!
Changing to polar coordinates 1/, 8, defined by
x1 =1 cos and x, =:7"sinf (4.4)

- [OWancK /

2D Metrics ™\

The metric describes the local geometry of a space.

ds® = dz? + dzj (4.1)

ds® = Z Z gy dzt dz” =: g, dat dx” (4.2)
[T

g11 =1 gi12 =0

5 it is easy to see that
ds? = dr’” +1° d9?> (4.5)

substituting ' = Rr,
o\ (change of scale)

do e ds* = R{dr® +r* df*} (4.6)

FRW Metric 3
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~ 2D Metrics

A more complicated case occurs if space Is curved. Easiest
case: surface of three-dimensional sphere (a two-sphere).

Eq. (4.7) gives

xgz\/Rz—x%—xg

After Kolb & Turner (1990, Fig. 2.1)
such that
8373 (956’3 I dCL’l + X2 dxz

011 015 \/RZ a2 o2

Introduce again polar coordinates 1/, 6 in zs-plane:

(note: ', 6 only unique in upper or lower half-sphere)
The differentials are given by
dz; = cos@ dr’ — r’'sin § db

dz, = sinf dr’ + ' cos 0 dé

X
3
! Two-sphere with radius R in R3:
------ G x5+ a5+ a5 = R (4.7)
R Length element of R>:
0 i .
"""" (P " X2 ds? = dz? + dz5 + dzs

dCUg = — dCUl + — dxz = — (48)

r1 =1 cos and x,=:7"sinf (4.4)

(4.9)

~N
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~ 2D Metrics

In cartesian coordinates, the length element on .2 is

(z1 dzg + 25 dxp)?

Alternatively, we can work in spherical coordinates on .#?

x1 = Rsinfcos ¢

x3 = Rcos6

(0 € 10, 7], ¢ € |0, 27)).
Going through the same steps as before, we obtain after
some tedious algebra

~N

2 2 2
ds® = dxj + dz5 + R — 22 — 22 (4.10)
inserting eq. (4.9) gives after some algebra
2
2 2 R 2
:’I“l d9 —|—Wd7“, (411)
finally, defining r = r'/R (i.e., 0 < r < 1) results in
d 2
ds’= R? L 202 (4.12)
1—1r2

xo, = Rsinfsin ¢ (4.13)

ds® = R? {dez + sin® @ d(bz} (4.14)

- [OWancK
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~ 2D Metrics ™\

(Important) remarks:

1. The 2-sphere has no edges, has no
boundaries, but has still a finite volume,
V =47 R

2. Expansion or contraction of sphere caused by
variation of K => R determines the scale of
volumes and distances on ..

R is called the scale factor

3. Positions on .2 are defined, e.g., by r and 6,
independent on the value of R

r and 6 are called comoving coordinates

4. Although the metrics Eqg. (4.10), (4.12), and
(4.14) look very different, they still describe the
same space — that’s why physics should be
covariant.

- [OWarwick] /
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~ 2D Metrics ™\
The hyperbolic plane, 77, is defined by
xf+ a5 — 15 = —R° (4.15)
If we work in space, where
ds® = dzf + dx5 — daj (4.16)

then
(21 dzy + 5 dxp)?
R? + xf + a5
— substitute R — iR (where i = v/—1) to
obtain same form as for sphere (eq. 4.11)!
Therefore,

2 2 dr? 2 12
ds“ =R + r° db (4.18)
1+ r?

(4.17)

2 2
= dx7 +dz5 —

- [OWancK /
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~ 2D Metrics ™\

The analogy to spherical coordinates on the
hyperbolic plane are given by

r1 = Rsinhfcos ¢
T, = Rsinhfsin ¢ (4.19)
r3 = Rcoshé

(0 € |[—o00,+00], ¢ € |0, 27]).

A session with Maple (see handout) will convince
you that these coordinates give

ds® = R? {d6? + sinh? 0 d¢* } (4.20)

Remark:
##? is unbound and has an infinite volume.

- [OWancK /
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Transcript of Maple session to obtain Eq. (4.20):

> xl:=r*sinh (theta) *cos (phi);
z1 := r sinh(6) cos(o)
> x2:=r*sinh(theta)*sin (phi);
z2 := r sinh(@) sin(¢)
> x3:=r*cosh(theta);
z8 := r cosh(f)
> dxl:=diff (x1,theta)*dtheta+diff (x1,phi) *dphi;
dz1 := r cosh(@) cos(¢) dtheta — r sinh(8) sin(¢) dphi
> dx2:=diff (x2,theta) *dtheta+diff (x2,phi) *dphi;
dz?2 := r cosh(8) sin(¢) dtheta + r sinh(f) cos(¢) dphi
> ds2:=dxl*dx1+dx2*dx2- (x1*dx1+x2*dx2) "2/ (r"2+x 1°2+x272);

ds2 := (r cosh(8) cos(¢) dtheta — r sinh(8) sin(¢) dphi)?

+ (r cosh(6) sin(¢) dtheta + r sinh(8) cos(¢) dphi)® — (
r sinh(#) cos(¢) (r cosh(h) cos(¢) dtheta — r sinh(8) sin(¢) dphi)

+ r sinh(6) sin(¢) (r cosh(8) sin(¢) dtheta + r sinh(8) cos(¢) dphi))? /(
r? + r? sinh(6)® cos(#)® + r? sinh(6)? sin(¢)?)
> expand(ds2);

72 cosh(8)? cos(¢)? dtheta® + r? sinh(8)? sin(¢)? dphi® + r? cosh(#)? sin(¢)? dtheta®
4 2 4 2 2
+ 12 5inh(8)? cos(¢)? dphi® — r* sinh(6) cos(gb(; 1cosh(t9) dtheta
0

. r* sinh(9)2 cos(¢)? cosh(6)? dtheta® sin(¢)? _ r*sinh(6)? sin(¢)* cosh(6)” dtheta®

%1 %1
%1 := r? + r? sinh(6)? cos(¢)? + r2 sinh(6)? sin(¢)?
> simplify(",{cosh(theta) "2-sinh(theta)"2=1}, [cosh(theta)]);
r? dtheta® + r? sinh(8)? dphi?
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~ 2D Metrics ™\
To summarize;
Sphere:
d 2
ds? = R2J — 1 42 42 (4.12)
1 — 72
Plane:
ds® = R? {dfr2 + 7 d@z} (4.6)
Hyperbolic Plane:
dr?
ds® = R? 2 do? 4.18
° { 1+ 72 T ( )

— All three metrics can be written as

2 2 dr? 2 2
ds“ =R - >+ db (4.21)
—kr

where £ defines the geometry:

f+1 spherical
k=< 0 planar (4.22)
| —1 hyperbolic

- [OWarwick] /
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~ 2D Metrics
For “spherical coordinates” we found:
Sphere:
ds® = R? {d@z + sin® 6 d(bz}
Plane:

ds? = R? {d0? + 0%d¢?}
Hyperbolic plane:
ds® = R? {d@z + sinh? 6 dqﬁz}

— All three metrics can be written as
ds® = R {0 + SF(0) do?

where )

sinff fork =+1
Sp(@) =146 fork= 0
\sinh@ fork = —1

We will also need the cos-like analogue

2

cosf fork =41
Cil0) = /1 — kS2(8) = {1 for k =
coshfd fork = —1

(4.14)

(4.6)

(4.20)

(4.23)

(4.24)

(4.25)

Note that, compared to the earlier formulae, some coordinates

J

\ have been renamed. This is confusing, but legal. ..

FRW Metric

10
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~ RW Metric ™\

* Cosmological principle + expansion —>
1 freely expanding cosmical coordinate
system.

— Observers =: fundamental observers
—Time =:
This is the coordinate system in which the 3K radiation is

Isotropic, clocks can be synchronized, e.g., by adjusting time to
the local density of the universe.

—> Metric has temporal and spatial part.

This also follows directly from the equivalence principle.

* Homogeneity and isotropy —> spatial part is
spherically symmetric:

dip? := df? + sin® 0 d¢p? (4.26)

 Expansion: d scale factor, R(t) = measure
distances using comoving coordinates.
—> metric looks like

ds® = ¢ dt* — R*(t) [fz(r) dr® + g*(r) dwz}
(4.27)
where f(r) and g(r) are arbitrary.

- [OWancK /
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~ RW Metric ™\

Metrics of the form of eq. (4.27) are called
Robertson-Walker (RW) metrics (1935).

Previously studied by Friedmann and Lemaitre. ..

One common choice Is

ds® = ¢ dt* — R*(t) [drz + SE(r) dwz} (4.28)

where

R(t): scale factor, containing the physics
{: cosmic time

r, 6, ¢: comoving coordinates

Si(r) was defined in Eq. (4.24).

Remark: 8 and ¢ describe directions on sky, as
seen from the arbitrary center of the
coordinate system (=us), r can be interpreted
as a radial coordinate.

- [OWancK /
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~ RW Metric ™\

The RW metric defines an universal coordinate
system tied to expansion of space:

B(x2,y2 B(X2,y2)
AlxLy1) \/
A(x1,y1)

Scale factor R(t) describes evolution of
universe.

* d is called the comoving distance.
* D(t) :=d - R(t) is called the proper distance,

(note that R is unitless, i.e., d and dR(t) are measured in Mpc)

“World model”: R(t) from GRT plus assumptions
about physics.

- [OWancK /
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~ RW Metric ™\

Other forms of the RW metric are also used:

1. Substitution Si.(r) — 7 gives

dr?
2 2 142 2 2 2 4.29
ds® = ¢© dt _R<t>{1—kr2+r dzp} ( )

(i.e., other definition of comoving radius r).

2. A metric with a dimensionless scale factor,

_ R#) R()
a(t) == Rite) ~ Fo

(where to=today, i.e., a(ty) = 1), gives

(4.30)

2
ds® = ¢® dt* — a®(t) {dfr2 + Sk(}gRZOT) dwz} (4.31)
0

3. Using a(t) and the substitution Si.(r) — r is also
possible:

dr?
ds® = ¢ dt*—a’(t 2dy?t  (4.32)
sc=c CL(){l—k-(RoT)Z—'_T w}

The units of Ryr are Mpc = Used for observations!

- [OWarwick] /
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(

- [OWancK

FRW Metric 15

RW Metric ™\

4. Replace cosmic time, ¢, by conformal time,

dn = dt/R(t) = conformal metric,

2
ds? — RZ(U) {dnz —- di _ 2 d¢2} (4.33)
— kr

Theoretical importance of this metric: For £ = 0, i.e., a
flat space, the RW metric = Minkowski line element X
R?(n) = Equivalence principle!

. Finally, the metric can also be written in the isotropic

form,

R(t)
1+ (k/4

ds® = °dt? — I {drz un frzdzpz} (4.34)
r

Here, the term in {. ..} is just the line element of a
3d-sphere = isotropy!

Note: There are as many notations as authors, e.g., some
use a(t) where we use R(t), etc. = Be careful!

Note 2: Local homogeneity and isotropy (i.e., within a
Hubble radius, r = ¢/ Hy), do not imply global homogeneity
and isotropy =—> Cosmologies with a non-trivial topology
are possible (e.g., also with more dimensions. . .).
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~ Hubble's Law ™\
Hubble’s Law follows from the variation of R(%):
- LTSS
e \‘ N b\' \
¢ D ’ & \
~
' QA l %L,
r r
—> Euclidean geometry
Proper distance between two observers:
D(t) =d- R(t) (4.35)
where d: comoving distance.
Expansion —> proper separation changes:
AD  R(t+ At)d — R(t)d
— 4.36
At At ( )
Thus, for At — 0,
dD . R
T R (4-37)
—> ldentify local Hubble “constant” as
R
H=—==ualt 4.38
& = alt) (4.38)
(a(t) from Eq. 4.30, a(today) = 1)
Since R = R(t) = H is time-dependent!
For small v, interpreted classically the red-shift is
v Hd
r=14+- = z-1=— (4.39)
C C
Observational Quantities 1
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- Redshift, | ~N

The comoving distance is constant, thus in terms of the
proper distance:

_ D(t =today) D(t)
d= Rt —today) _ R(l) const. (4.40)

Seta(t) = R(t)/R(t = today), then eq. (4.40) implies
N = e (4.41)

Aemit

(Aops: Observed wavelength, \emit: emitted wavelength)
Thus the observed redshift is
>\obs - >\emit o >\obs

z = = —1 (4.42)
)\emit )\emit
or
1 R(t = today)
1+ 2 = = 4.43
Aemit R(t) ( )

Light emitted at z = 1 was emitted when the universe was half as
big as today!

z: measure for relative size of universe at time the observed

light was emitted.
Because of 2 = Vemit/ Vops.
Vemit 1

= (4.44)
Vobs Uemit

- [OWancK /
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An alternative derivation of the cosmological redshift follows directly from general relativity, using the basic
GR fact that for photons ds?® = 0. Inserting this into the metric, and assuming without loss of generality
that d/> = 0, one finds

di
0= d? — R2(t) dr? = dr=+—r 4.45
c ( ) r r R(t) ( )
Since photons travel forward, we choose the +-sign.
temit-'iéitg 77777777777 tobs-i_A to
temit tobs

The comoving distance traveled by photons emitted at cosmic times temit and temit + Ate is

tobs ¢ dt tobs Ao (. gy
1T = —— and Ty = —_— (446)
t

temit R(t) it At R(t)
But the comoving distances are equal, 71 = r,! Therefore
tobs ¢ dt tobs+Ato c dt
o /temit R(t) /temﬁ 0] (4.47)
temit+A% ., 4t tobst Ato . gt
= /temit R(t) /tobs R(t) (4.48)

If At small = R(t) ~ const.:

At c At, (4.49)
R(temit) R(tobs) .
For a wave: cAt = ), such that
Aemit o Aobs Aemit o R<temit) (4.50)

= — =
R(tcmit) R(tobs) /\obs R(tobs)

From this equation it is straightforward to derive Eq. (4.42).
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- Redshift, | ~N

Outside of the local universe: Eq. (4.43) only valid
Interpretation of z.

—> It IS common to interpret z as in special
relativity:

(4.51)

Redshift is due to expansion of space, not due to
motion of galaxy.

What is true is that z is accumulation of many infinitesimal
red-shifts a la Eq. (4.39), see, e.g., Peacock (1999).

- [OWancK /
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~ Time Dilatation N\

Note the implication of Eq. (4.49) on the hand-out:
c Ate c At,

Rltem)  Rltons) (449
— dt/ R is constant:
dit

% = const. (4.52)

In other words:
dtobs R@obs)
dtemit R<temit) ( )

—> Time dilatation of events at large z.

This cosmological time dilatation has been
observed in the light curves of supernova
outbursts.

All other observables apart from z (e.g., number
density N(z), luminosity distance dj,, etc.)
require explicit knowledge of R(t) = Need to
look at the dynamics of the universe.

- [OWancK /

Observational Quantities 4



4-22

~ Friedmann Equations, | N

General relativistic approach: Insert metric into
Einstein equation to obtain differential equation
for R(t):

Einstein equation:

1 8nG
R/W — E%guy — 7TMV + Agluy (454)
G

where

g, Metric tensor (ds® = g, dz# dz)
R, Ricci tensor (function of g,,,)
2 Ricci scalar (function of g,,,)
G, Einstein tensor (function of g,,,,)

1,,. Stress-energy tensor, describing curvature
of space due to fields present (matter,
radiation,. . .)

A: Cosmological constant

—> Messy, but doable

- [OWancK /
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~ Friedmann Equations, Il ™
m<> Here, Newtonian derivation of
& Friedmann equations: Dynamics
S of a mass element on the
surface of sphere of density p(t)
and comoving radius d, i.e.,
proper radius d - R(t) (after
McCrea & Milne, 1934).
Mass of sphere:
47 A7 o
M = —(dR)3*p(t) = —d3py where p(t) =
(4.55)
Force on mass element:
d? GMm 4G dpg
—(dR(t) = ——==— 4.56
maE W) = —GreE T T3 w459
Canceling m - d gives momentum equation:
. AtGG po ArG
R TP 7T DRt 4.57
55 = ——— (R (457
From energy conservation, or from multiplying Eq. (4.57)
with R and integrating, we obtain the energy equation,
1. 4G
SR = 4T PO onst
2 3 R(t) N
(4.58)
4G 5
— +T'0(t)R (t) + const.
where the constant can only be obtained from GR.
Dynamics 2
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~ Friedmann Equations, Il

Problems with the Newtonian derivation:

(for r¢oug — 00 the force is undefined)
—> violates cosmological principle.

2. Particles move through space
—> v > c possible
— violates SRT.

Why do we get correct result?

GRT — Newton for small scales and mass
densities; since universe is isotropic =—> scale
Invariance on Mpc scales = Newton sufficient
(classical limit of GR).

(In fact, point 1 above does hold in GR: Birkhoff’s theorem).

- [OWancK

1. Cloud is implicitly assumed to have rqouq < 00

~N
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~ Friedmann Equations, IV ™

The exact GR derivation of Friedmanns equation
gives:

4 3 1
e 3G (p + —f) + {—AR}
o 3G & . 3 (4.59)
TP R2 _ e+ {g/\CzRZ}

R* =+
3

Notes:
1. For k = 0: Eq. (4.59) — Eq. (4.58).

2.k € {—1,0,+1} determines the curvature of
space.

3. The density, p, includes the contribution of all
different kinds of energy (remember
mass-energy equivalence!).

4. There is energy associated with the vacuum,
parameterized by the parameter A.

The evolution of the Hubble parameter is (A = 0):

-\ 2
R R . 87TG,0 /{62 (4.60)
(R) ="

- [OWanicK /
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~ The Critical Density, | N

Solving Eq. (4.60) for £:

2
i (SWGp _ H2> .y (4.61)

C 3
—> Sign of curvature parameter k£ only depends
on density, p:
Defining
3H? 0
e and () = — 4.62
Pe= g7 o (4.62)

It IS easy to see that:

() >1 = k > 0 closed
=1=— k=0 flat
(<1 = k<0 open

thus p. is called the critical density.

For () < 1 the universe will expand until oo,
for {2 > 1 we will see the “big crunch”.

Current value of p.: ~ 1.67 x 10~** g/cm?,
(3...10 H-atoms/m3).
Measured: {2 =0.1...0.3.

(but note that A can influence things (£, = 0.7))).

- [OWancK /
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~ The Critical Density, N

() has a second order effect on the expansion:
Taylor series of R(t) around t = t:

1 R(to)

R(t)  R(to) R(to)

= + t—to)+= t—to)°
Rt~ Rito) Rito) 7 2 Rito) "
(4.63)
The Friedmann equation Eq. (4.57) can be written
R 4G AnG 3H2_ _QH2
R~ 3 7773 YaG 2
(4.64)
Since H(t) = R/R (Eq. 4.38), Eq. (4.63) is
R(t) 1Q 5
=1+ Hy (t—tg)— — HS (t—t 4.65
Rlto) +Hy (t—1o) > 5 o (t—to)" ( )

where Hy = H(1g) and () = Q(tg).

The subscript 0 is often omitted in the case of ().

Often, Eqg. (4.65) is written using the deceleration
parameter:

= —— .66
(o) (4.66)

Q R(to)R(to)
2

Dynamics 6



4-28

~ Equation of state, |

For the evolution of the universe, need to look at

three different kinds of equation of state:

Matter : Normal particles get diluted by expansion
of the universe:

~N

pm X B3 (4.67)

Matter is also often called dust by cosmologists.

Radiation : The energy density of radiation
decreases because of volume expansion and
because of the cosmological redshift
(Eq. 4.50: Ao/ Ao = Ve/Vs = R(t,)/R(t)) =

prox R™* (4.68)

Vacuum : The vacuum energy density (=A) is
iIndependent of R:

Py = const. (4.69)

Inserting these equations of state into the Friedmann
equation and solving with the boundary condition
R(t = 0) = 0 then gives a specific world model.

Dynamics 7
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~ Equation of state, Il ™
Current scale factor is determined by Hy and €2g:
Friedmann for ¢ = .
: 8¢
R2 - WT,ORS — _k  (4.70)
Insert €2 and note Hy = RO/RO
& HER§ — HEOR5 = —kc? (4.71)
And therefore
C k
Ry = 4.72
o=\ 0-1 (4.72)

For () — 0, Ry — ¢/ Hy, the Hubble length.

For () = 1, Ry is arbitrary.

We now have everything we need to solve the
Friedmann equation and determine the evolution
of the universe. Three cases: £k =0, +1, —1.

- [OWancK
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~ k = 0, Matter dominated N
For the matter dominated, flat case (the Einstein-de Sitter
case), the Friedmann equation is

: 8rG ,00R3
R? — OR*=0 4.73
3 13 (4.73)
Fork =0:¢=1and
8rG
TR0 _ O H2RE = H2RS (4.74)
Therefore, the Friedmann eq. is
. HZRS dR
2200 g — o HRPPRTYVZ O (475)
R dt
Separation of variables and setting R(0) = 0,
R(t) 2
/ RY2dR = HyRY*t <+ g}%3/2@) — HoR3%
’ (4.76)
Such that 2/3
3H
R(t) = Ry (70 t) (4.77)
For £ = 0, the universe expands until oo, its current age
(R(to) = Rp) is given by
to = ° (4.78)
° " 3H, |
Reminder: The Hubble-Time is H,* = 9.78 Gyr/h.
Dynamics 9
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~ k = +1, Matter dominated, |
For the matter dominated, closed case, Friedmanns
equation is
RZ . 87TG IOORS _ _CZ <:> RZ . HgRgQO _ _Cz
3 R
(4.79)
Inserting R from Eq. (4.72) gives
: HZCSQO 1
R* — ) — = 4.80
HQ—-122 R * (4.80)
which is equivalent to
dR g 1/2 ) C Qo
=221 th = 4.81
- =°C (R ) with & Ho (= 1772 (4.81)
With the boundary condition R(0) = 0, separation of
variables gives
R(t) dR R(t) RdR
ct = / 17 = / VR 172 (4.82)
o (§/R—-1) o (£—R)
Integration by substitution gives
6
R :é‘sinza = g(l — cos )
—> cl = g (0 —sinf) (4.83)
Dynamics 10




~ k = +1, Matter dominated, Il
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(;! —r Tt T |1 Tt T T Tv [ T T T T [ T T T T [ T T T T [ T T T T
[

6.0

5.5

t/h [Gyr]

5.0 -

4.5““1““1“ 1 P S S S B S S S

1.5 20 25 30 35
Q

The age of the universe, tg, is obtained by solving

C
Ho(Qo — 1)1/2

Ry =

B f B 1 c £20
— 5(1 — COS 00)— 5 HO (£20 B l>3/2 (1

(remember Eq. 4.72!). Therefore

— costl) (4.84)

4.0

2—) 2
cos By = 0 = sinfp=— -1 (4.85)
o £
Inserting this into Eq. (4.83) gives
1 (o 2 — (g 2
lo = — —/—1
o= o @ (T ) o]
(4.86)
Dynamics 11
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/_k = +1, Matter dominated, Il N
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Since R is a cyclic function = The closed universe has a

finite lifetime.
Max. expansion at # = 7, with a maximum scale factor of

C Qo

Ryax =& = 4.87
After that: contraction to the big crunch at 6 = 2.
— The lifetime of the closed universe is
7 Qo
t = (4.88)

Hy (Qg — 1)3/2

[ /

Dynamics 12
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~ k = —1, Matter dominated, | ™

Finally, the matter dominated, open case. This case is very
similar to the case of £ = +1:

For k = —1, the Friedmann equation becomes
dR C 1/2
—=c|=+4+1 4.89
a - (R - ) (4.89)
where
{

(4.90)

‘= c
- Hy (1 —Q)3/2
Separation of variables gives after a little bit of algebra

R = g(coshe—l)

ct = g(sinhe —1)

(4.91)

where the integration was again performed by substitution.

Note: 6 here has nothing to do with the coordinate angle 6!

- [OWancK /
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~ k = —1, Matter dominated, I N

1OE e e

to/h [Gyr]
00)
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To obtain the age of the universe, note that at the present
time,

(4.92)

2
sinh 90 = Q—\/ 1— Qo

0
(identical derivation as that leading to Eq. 4.84) such that

1 Qo
- 2H, (1 — )32

{2 (/) | O

(o (2o

lo

- [OWarwick] /
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~ Summary

For the matter dominated case, our results from Egs. (4.83),
and (4.91) can be written with the functions S}, and C};,
(Egs. 4.24 and 4.25):

R=k#(1— C(6))

Ho (k(Qo —1))%/?

(note typo in Eg. 3.42 of Peacock, 1999).

Notes:

1. Eq. (4.94) can also be derived as the result of the
Newtonian collapse/expansion of a spherical mass
distribution.

2. 0 is called the development angle, it can be shown to be
equal to the conformal time of Eq. (4.33).

(4.94)
ct = k% (0 — Si(0))
where
( (
sin 6 cosf fork =41
Sp(0) =<6 and Ci(0) =<1 fork= 0
\sinh@ \cosh@ fork = —1
(4.24, 4.25)
Eq. (4.94) is called the cycloid solution.
The characteristic radius, #, is given by
(/2
R~ o/ (4.95)

~N

J

- [OWancK
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100~ —k=-1 ]

: e k= 0 |

B —k=+1 .

. i |
T

O.l | | | | ‘ | | |
0.0 0.5 15
| ct/2TR J
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