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1–2

Introduction 1

Schedule

Introduction 01 16.10. Introduction/History

02 23.10. Basic Facts

World Models 03 30.10. World Models

Classical Cosmology 04 06.11. Distances, H0

05 13.11. Distances, H0

The Early Universe 06 20.11. Hot Big Bang Model

07 27.11. Nucleosynthesis

08 04.12. Inflation

11.12. no lecture
Large Scale Structures 09 18.12. Ω and Λ

10 08.01. Dark Matter

11 15.01. Large Scale Structures

12 22.01. Structure Formation

13 29.01. Structure Formation

Summary 14 05.02. Wrap Up
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1–3

Introduction 2

Literature

1. Cosmology Textbooks

SCHNEIDER, P., 2005, Einführung in die Extragalaktische Astronomie und

Kosmologie, Heidelberg: Springer, 59.95 (English edition also available)
Well written introduction to cosmology, approximately at the level of this lecture.

Recommended.

PEACOCK, J.A., 1999, Cosmological Physics, Cambridge: Cambridge Univ.

Press, 49.50
Very exhaustive, but difficult to read since the entropy per page is very high. . . still: a “must

buy”.

LONGAIR, M.S., 1998, Galaxy Formation, Berlin: Springer, 53.45
Clear and pedagogical treatment of structure formation, recommended.
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1–4

Introduction 3

Literature

BERGSTRÖM, L. & GOOBAR, A., 1999, Cosmology and Particle Astrophysics,

New York: Wiley, 47.90
Nice description of the physics relevant to cosmology and high energy astrophysics, focusing

on concepts. Less detailed than Peacock, but easier to digest.

PADMANABHAN, T., 1996, Cosmology and Astrophysics Through Problems,

Cambridge: Cambridge Univ. Press, $36.95
Large collection of standard astrophysical problems (with solutions) ranging from radiation

processes and hydrodynamics to cosmology and general relativity

PADMANABHAN, T., 1993, Structure Formation in the Universe, Cambridge:

Cambridge Univ. Press, 46.50
Mathematical treatment of cosmology, focusing on the formation of structure . . . Less

astrophysical than the book by Longair.

ISLAM, J.N., 2002, An Introduction to Mathematical Cosmology, Cambridge:

Cambridge Univ. Press, 42.50
Useful summary of the facts of classical theoretical cosmology, recently revised.
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1–5

Introduction 4

Literature

KOLB, E.W. & TURNER, M.S., 1990, The Early Universe, Reading:

Addison-Wesley, 49.90
Graduate-level text, the section on phase transitions and inflation in the early universe is

especially recommended.

PEEBLES, P.J.E., 1993, Principles of Physical Cosmology, Princeton: Princeton

Univ. Press (antiquarian only, do not pay more than $30!)
700p introduction to modern cosmology by one of its founders, in some parts quite readable,

however, many forward references make the book very difficult to read for beginners.
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1–6

Introduction 5

Literature

2. Textbooks on General Relativity

WEINBERG, S., 1972, Gravitation and Cosmology, New York: Wiley, 129
Classical textbook on GR, still one of the best introductions. Nice section on classical

cosmology.

SCHUTZ, B.F., 1985, A First Course in General Relativity, Cambridge:

Cambridge Univ. Press, 45.90
Nice and modern introduction to GR. The cosmology section is very short, though.

MISNER, C.W., THORNE, K.S. & WHEELER, J.A., 1973, Gravitation, San

Francisco: Freeman, 104.90
Commonly called “MTW”, this book is as heavy as the subject. . . Uses a weird notation. The

cosmology section is outdated.

WALD, R.M., 1984, General Relativity, Chicago: Univ. Chicago Press (only

antiquarian, ∼$40)
Modern introduction to GR for the mathematically inclined.
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2–2

Prehistory 1

Prehistory

Pre-Babylonian astronomy: no written

records known

But: Observations of the sky must have

been important!

“Adorant” from the Geißenklösterle cave near Blaubeuren (Lkr. Ulm; 3.8 cm× 1.4 cm); Back side shows
marks which have been interpreted as a lunar calendar.
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2–3

Pre-Copernican Astronomy 1

Babylon

Babylonian astronomy: Earliest astronomy

with influence on us: ∼360 d year

=⇒sexagesimal system [360:60:60], 24h

day, 12×30 d year,. . .

Enuma Elish myth (∼1100BC): Universe is

place of battle between Earth and Sky, born

from world parents.

Note similar myth in the Genesis. . .

Image: Mul.Apin cuneiform tablet (British Museum,
BM 86378, 8 cm high), describes rising and setting of
constellations through the babylonian calendar.
Summarizes astronomical knowledge as of before
∼690 BC.
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2–4

Pre-Copernican Astronomy 2

Egypt

Egyptian coffin lid showing two

assistant astronomers,

2000. . . 1500 BC; hieroglyphs list

stars (“decans”) whose rise

defines the start of each hour of

the night.

(Aveni, 1993, p. 42)

∼2000 BC: 365 d calendar (12×30 d plus 5 d extra), fixed to Nile flood (heliacal

rising of Sirius), star clocks.

heliacal rising: first appearance of star in eastern sky at dawn, after it has been hidden by the Sun.
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2–5

Pre-Copernican Astronomy 3

Greek/Roman, I

Atlas Farnese, 2c A.D., Museo
Archeologico Nazionale, Napoli

Early Greek astronomy: folk tale astronomy (Hesiod

(730?–? BC), Works and Days). Constellations.

Thales (624–547 BC): Earth is flat, surrounded by

water.

Anaxagoras (500–428 BC): Earth is flat, floats in

nothingness, stars are far away, fixed on sphere

rotating around us. Lunar eclipses: due to Earth’s

shadow, Sun is hot iron sphere

Eudoxus (408–355 BC): Geocentric, planets affixed

to concentric crystalline spheres. First real model

for planetary motions!
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2–6

Pre-Copernican Astronomy 4

Greek/Roman, II

87deg

First attempts to measure scale of the universe:

Aristarch (310–230 BC): Determination of the relative distance between the

Moon and the Sun: Sun is 20× farther away than the Moon

reality: 400×
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2–7

Pre-Copernican Astronomy 5

Greek/Roman, III

Cyrene

Alexandria

Sun

Eratosthenes von

Cyrene (276–196 BC):

Measurement of the

radius of the Earth:

Distance between

Cyrene (Assuan) and

Alexandria, diameter

of Earth is

250000 stadia
The length of a stadium is
unknown =⇒ we do not know
how precise he was.
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2–8

Pre-Copernican Astronomy 6

Greek/Roman, IV

Aristotle (384–322 BC, de

caelo): Refinement of

Eudoxus model: add

spheres to ensure

smooth motion

=⇒ Universe filled with

crystalline spheres

(nature abhors

vacuum).

Ether in celestial spheres,
not on Earth (everything
falls, except for planets
and stars); Stars are very
distant since they do not
show parallaxes.

=⇒ Central philosophy until ∼1450AD!
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2–9

Pre-Copernican Astronomy 7

Hipparcus

Hipparchus (?? – ∼127 BC): Refinement of geocentric Aristotelian model into

tool to make predictions.

• Catalogue of 850 stars

• magnitudes

• lunar parallax

• Table of “chords” (=early trigonometry)

• Discovery of precession
Difference between the durations of the siderial and the tropical year [365.25− 1/300 d vs.
365.25 + 1/400 d], through comparison with babylonian measurements

• different duration of seasons

• conversion of geocentric model of Aristotele into a tool to make predictions.
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2–10

Pre-Copernican Astronomy 8

Ptolemy

(Aveni, 1993, p. 58)

Ptolemy (∼140AD): Syntaxis (aka

Almagest): Refinement of Aristotelian

theory into model useable for

computations

Foundation of astronomy until

Copernicus

=⇒ Ptolemaic System.



After Hipparcus and Ptolemy: end of

the golden age of early astronomy.

Greek works are continued by arabs

and further refined.

Aristotele’s philosophy remains

foundation of science of medieval ages

and is not questioned (in Europe).



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

2–12

Renaissance 1

Copernicus, I

Nicolaus Copernicus (1473–1543):

Earth centred Ptolemaic system is

too complicated, a Sun-centred

system is more elegant.
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2–12

Renaissance 2

Copernicus, II

(Gingerich, 1993, p. 165)

Nicolaus Copernicus (1473–1543):

Earth centred Ptolemaic system is

too complicated, a Sun-centred

system is more elegant:

De revolutionibus orbium

coelestium: “In no other way do we

perceive the clear harmonious

linkage between the motions of the

planets and the sizes of their orbs.”
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2–12

Renaissance 3

Copernicus, III

(Gingerich, 1993, p. 165)

Nicolaus Copernicus (1473–1543):

Earth centred Ptolemaic system is

too complicated, a Sun-centred

system is more elegant:

De revolutionibus orbium

coelestium: “In no other way do we

perceive the clear harmonious

linkage between the motions of the

planets and the sizes of their orbs.”

Copernican principle: The Earth

is not at the center of the

universe.



The “censored” copy owned by Galileo (Gingerich, 2005, Bibl. Florenz)



(Gingerich, 2005)

The “censored” copy of Galileo’s “de revolutionibus”
Deleted: “Indeed, large is the work of . . . God”

Changed: “On the explanation of the triple motion of the Earth”

=⇒ “On the hypothesis of the triple motion of the Earth”



(Gingerich, 2005)

Distribution of the censored copies of “De revolutionibus”



(Gingerich, 1993)

The error in the Copernican position of Mercury. . .



. . . is not smaller than the error in the ptolemaic Alfonsinian Tables
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2–18

Renaissance 9

Brahe

Tycho Brahe (1546–1601): Visual planetary

positions of highest precision reveal flaws in

Ptolemaic positions.
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2–19

Renaissance 10

Kepler, I

Johannes Kepler (1571–1630):

• 27.12.1571, Weil der Stadt

• Studies in Tübingen with

Maestlin

• 1594–1600: Graz

• 1596: Mysterium

Cosmographicum

• 1600–1612: Prag, with Brahe,

court astrologer, theory of

planets, discovery of the

supernova of 1604,. . .

• 1609: Astronomia Nova
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2–20

Renaissance 11

Kepler, II

Kepler’s theory of planetary

motion: Astronomia nova (Prag,

1609)

Critique of epicycles: “panis

quadragesimalis” (Osterbrezel)

=⇒ inelegant!

Astronomia Nova, chapter 1: Motion of

Mars in the theory of epicycles



Kepler’s laboratory book

Drawing of Mars in opposition

highlighted: one of the few positions of

Mars done by Brahe which Kepler was

allowed to use

(Gingerich, 1993)
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2–22

Renaissance 13

Kepler, IV

Tabulae Rudolphinae, 1627

Best planetary positions

(error only ∼5′!)

(Gingerich, 2005)



Comparison of positions, Kepler

vs. copernican theory

=⇒ extreme improvement!

(Gingerich, 1993)
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2–24

Renaissance 15

Galilei

Galileo Galilei (1564–1642): Telescope

=⇒ Observations!

=⇒ Siderius Nuncius (1610)
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2–25

Renaissance 16

Galilei

The moons of Jupiter move around Jupiter

(=⇒ similar to the heliocentric model!). . .
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2–26

Renaissance 17

Galilei

Moon has surface features, shadows, and “wiggles” (libration!).
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2–27

Renaissance 18

Galilei

Discovery of the phases of Venus (Il Saggiatore, 1623)
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2–28

Renaissance 19

Galilei

The observed sequence of the phases of Venus cannot be explained by the

geocentric theory, only by a heliocentric theory.
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2–29

Post Copernican Astronomy 1

Newton

(Newton, 1730)

Isaac Newton (1642–1727): Newton’s

laws, physical cause for shape of orbits

is gravitation

(De Philosophiae Naturalis Principia

Mathematica, 1687).

=⇒Begin of modern physics based

astronomy.
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2–30

Post Copernican Astronomy 2

18th and 19th century

Galileo: Milky Way consists of stars.

Newton: Stars are distant suns

William Herschel (1738–1822): Milky Way is a

flattened disk of stars, Sun is at center (see

figure).

Immanuel Kant (1724–1804): “Nebulae are

galaxies” (disputed until the 1910s).

Friedrich Bessel (1784–1846): Distance to 61 Cyg

(1838), positions of 50000 stars

John Herschel (1792–1871): General Catalogue

of Galaxies (1864, 5079 Objects)

John Dreyer (1852–1926): NGC+IC

(15000 Objects)
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2–31

Modern Astronomy 1

Albert Einstein

Albert Einstein (1879–1955): Theory of

gravitation, applicability of theory to evolution of

the universe as a whole.
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2–32

Modern Astronomy 2

Edwin Hubble

Christianson, 1995, p. 165

Edwin Hubble (1889–1953):

• Realization of galaxies as being

outside of the Milky Way

• Discovery that universe is expanding

Founder of modern extragalactic

astronomy



2–32

Aveni, A. F., 1993, Ancient Astronomers, (Washington, D.C.: Smithsonian Books)

Gingerich, O., 1993, The Eye of Heaven – Ptolemy, Copernicus, Kepler, (New York: American Institute of Physics)

Gingerich, O., 2005, The book nobody read, (London: arrow books)

Newton, I., 1730, Opticks, Vol. 4th, (London: William Innys), reprint: Dover Publications, 1952
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3–2

Basic Facts 1

Basic Facts

Cosmology deals with answering the questions about the universe as a whole.

The main question is:

How did the universe evolve into what it is now?

For this, four major facts need to be taken into account:

The universe is: • expanding,

• isotropic,

• and homogeneous.

The isotropy and homogeneity of the universe is called the cosmological principle.

Perhaps (for us) the most important fact is:

• The universe is habitable to humans.

i.e., the anthropic principle.

The one question cosmology does not attempt to answer is: How came the universe into being?

=⇒ Realm of theology!
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3–3

Basic Facts 2

Expansion, I

(Hubble, 1929, Fig. 1)

Hubble (1929): Velocity v

(defined as v/c := z = ∆λ/λ)

for galaxy at distance r is

v(r) = H0r + vX cosα cos δ

+ vY sinα cos δ + vZ sin δ (3.1)

(vX, vY , vZ) velocity due to motion of solar system (∼ 350 km s−1 towards l = 264◦, b = 48◦,

Bennet et al., 1996)

H0: “Hubble parameter”; intrinsic component of velocity due to

expansion of the universe.

Old usage: “Hubble constant”, but H0 6= const. (cf. Eq. (4.36)).



Dome of the 5 m Hale Telescope on Mt. Palomar (©I. Kreykenbohm)



Dome of the 5 m Hale Telescope on Mt. Palomar (© J. Wilms)



The 5 m Hale Telescope (© I. Kreykenbohm)



The 5 m Hale Telescope (© I. Kreykenbohm)



Mount of the 5 m Hale Telescope (© I. Kreykenbohm)



No comment (© I. Kreykenbohm)



courtesy 2dF QSO Redshift survey

As a consequence of the cosmological redshift, for different z different parts of the

spectrum of a distant source are visible.



W
avelength

Redshift of Source
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3–13

Basic Facts 12

Expansion, XI

1930 1940 1950 1960 1970 1980
Year

0

100

200

300

400

500

600

H
0

L

H
H
H

H
H

M

BT
B

HMS

S

McV

A
dV dV

ST
dV

(after Trimble, 1997)

Currently accepted value:

H0 ∼ 75 km s−1 Mpc−1.

The systematic uncertainty of

H0 is ∼ 10 km−1 s−1 Mpc−1.

Parameterize uncertainty in

formulae by defining

H0 = 100 km s−1 Mpc−1 · h
H0 = 75 km s−1 Mpc−1 · h75

(3.2)

Note: H−1
0 has units of time: H−1

0 = 9.78 Gyr/h: Hubble-Time;

for h = 0.75, the Hubble-Time is 13 Gyr.
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3–14

Basic Facts 13

Expansion, XII

For standard candles, i.e., objects where the

absolute luminosity L is known, the Hubble law

can be written using observed quantities only:

Euclidean space =⇒ observed flux

f =
L

4πd2
L

⇐⇒ dL =

(
L

4πf

)1/2

(3.3)

where dL is the luminosity distance.

Using the Hubble law eq. (3.1)

H0dL = cz =⇒ z ∝ H0

(
L

4πf

)1/2

(3.4)

Since magnitudes are defined via

m ∝ −2.5 log f :

log z ∝ logH0 +
1

2
(logL− log f ) =⇒ log z = a + b(m−M) (3.5)

where m−M : distance modulus.
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Basic Facts 14

Expansion, XIII

v=r/2 Expansion law v = H0r is unchanged

under rotation and translation:

isomorphism.
Proof:

Rotation: Trivial.

Translation: Observations from place with

position r
′ and velocity v

′: Observed

distance is ro = r − r
′, observed velocity

is vo = v − v
′. Because of the Hubble law,

vo = H0r −H0r
′ = H0 (r − r

′) = H0ro

This isomorphism is a direct

consequence of the homogeneity of

the universe.

Despite everything receding from us, we are not at the center of the

universe =⇒ Copernicus principle still holds.
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Basic Facts 15

Homogeneity and Isotropy, I

after Silk (1997, p. 8).

Note that homogeneity does not imply isotropy!
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Basic Facts 16

Homogeneity and Isotropy, II

Neither does isotropy around one point imply homogeneity!

=⇒ Both assumptions need to be tested.
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Basic Facts 17

Homogeneity, I

2dF Survey, ∼220000 galaxies total

The universe is homogeneous⇐⇒ The universe looks the same everywhere in

space

Testable by observing spatial distribution of galaxies.



2dF Survey, ∼220000 galaxies total

On scales�100 Mpc the universe looks indeed the same.

Below that: structure.
Structures seen are galaxy clusters (gravitationally bound) and superclusters (larger structures, not [yet]

gravitationally bound).



(Jarrett, 2004, Fig. 1)

Distribution of Galaxy redshifts in the 2MASS galaxy catalogue
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Basic Facts 20

Isotropy

The universe is isotropic

⇐⇒ The universe looks the

same in all directions

Radio galaxies are mainly

quasars

=⇒Sample large space

volume (z & 1)

=⇒ Clear isotropy.

Peebles (1993): Distribution of

31000 objects at λ =6 cm from

the Greenbank Catalogue.

Anisotropy in the image: galactic
plane, exclusion region around Cyg A,
Cas A, and the north celestial pole.
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Basic Facts 21

Isotropy

Best evidence for isotropy: Intensity of

3 K Cosmic Microwave Background

(CMB) radiation.

First: dipole anisotropy due to motion of Sun

(see slide 3–3), after subtraction: ∆T/T . 10−4

on scales from 10′′ to 180◦.

At level of 10−5: structure in CMB due to structure of
surface of last scattering of the CMB photons, i.e.,
structure at the time when Hydrogen recombined.
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4–2

Introduction 1

Structure

Observations: cosmological principle holds: The universe is homogeneous and

isotropic.

=⇒Need theoretical framework obeying the cosmological principle.

Use combination of
• General Relativity

• Thermodynamics

• Quantum Mechanics
=⇒ Complicated!

For 99% of the work, the above points can be dealt with separately:
1. Define metric obeying cosmological principle.

2. Obtain equation for evolution of universe using Einstein field equations.

3. Use thermo/QM to obtain equation of state.

4. Solve equations.
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4–3

FRW Metric 1

GRT vs. Newton

Before we can start to think about universe: Brief introduction to assumptions of

general relativity.

=⇒ See theory lectures for the gory details, or check with the literature (Weinberg or MTW).

Assumptions of GRT:

• Space is 4-dimensional, might be curved

• Matter (=Energy) modifies space (Einstein field equation).

• Covariance: physical laws must be formulated in a coordinate-system

independent way.

• Strong equivalence principle: There is no experiment by which one can

distinguish between free falling coordinate systems and inertial systems.

• At each point, space is locally Minkowski (i.e., locally, SRT holds).

=⇒Understanding of geometry of space necessary to understand physics.
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FRW Metric 2

2D Metrics

Before describing the 4D geometry of the universe: first look at 2D spaces

(easier to visualize).

After Silk (1997, p. 107)

There are three classes of isotropic and homogeneous two-dimensional spaces:
• 2-sphere (S 2) positively curved

• x-y-plane (

�

2) zero curvature

• hyperbolic plane (H 2) negatively curved
(curvature ≈∑angles in triangle >, =, or < 180◦)

We will now calculate what the metric for these spaces looks like.
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4–5

FRW Metric 3

2D Metrics

The metric describes the local geometry of a space.

Differential distance, ds, in Euclidean space,

�

2:

ds2 = dx2
1 + dx2

2 (4.1)

The metric tensor, gµν, is defined through

ds2 =
∑

µ

∑

ν

gµν dxµ dxν =: gµν dxµ dxν (4.2)

(Einstein’s summation convention)

Thus, for the

�

2,

g11 = 1 g12 = 0

g21 = 0 g22 = 1
(4.3)



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

4–6

FRW Metric 4

2D Metrics

But: Other coordinate-systems are also possible in the plane!

Changing to polar coordinates r′, θ, defined by

r´d

dθ
θ

θ
ds

dr´

x2

x 1

r´

x1 =: r′ cos θ

x2 =: r′ sin θ
(4.4)

it is easy to see that

ds2 = dr′
2
+ r′

2
dθ2 (4.5)

Performing a change of scale by

substituting r′ = Rr, then gives

ds2 = R{dr2 + r2 dθ2} (4.6)
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4–7

FRW Metric 5

2D Metrics

A more complicated case occurs if space is curved.

Easiest case: surface of three-dimensional sphere (a two-sphere).

x3

θ x2

R

x1

θ r´

φ

After Kolb & Turner (1990, Fig. 2.1)

Two-sphere with radius R in

� 3:

x2
1 + x2

2 + x2
3 = R2 (4.7)

Length element of
� 3:

ds2 = dx2
1 + dx2

2 + dx2
3

Eq. (4.7) gives

x3 =
√
R2 − x2

1 − x2
2

such that

dx3 =
∂x3

∂x1
dx1 +

∂x3

∂x2
dx2

= −x1 dx1 + x2 dx2√
R2 − x2

1 − x2
2

(4.8)
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FRW Metric 6

2D Metrics

Introduce again polar coordinates r′, θ in x3-plane:

x1 =: r′ cos θx2 =: r′ sin θ (4.4)

(note: r′, θ are only unique in upper or lower half-sphere)

The differentials are given by

dx1 = cos θ dr′ − r′ sin θ dθ and dx2 = sin θ dr′ + r′ cos θ dθ (4.9)

In cartesian coordinates, the length element on S
2 is

ds2 = dx2
1 + dx2

2 +
(x1 dx1 + x2 dx2)

2

R2 − x2
1 − x2

2

(4.10)

inserting eq. (4.9) gives after some algebra

= r′
2

dθ2 +
R2

R2 − r′2 dr′
2

(4.11)

finally, defining r = r′/R (i.e., 0 ≤ r ≤ 1) results in

ds2= R2

{
dr2

1− r2
+ r2 dθ2

}
(4.12)



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

4–9

FRW Metric 7

2D Metrics

Alternatively, we can work in spherical coordinates on S 2

x1 = R sin θ cosφ

x2 = R sin θ sinφ

x3 = R cos θ

(4.13)

(θ ∈ [0, π], φ ∈ [0, 2π]).

Going through the same steps as before, we obtain after some tedious algebra

ds2 = R2
{

dθ2 + sin2 θ dφ2
}

(4.14)
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FRW Metric 8

2D Metrics

(Important) remarks:

1. The 2-sphere has no edges, has no boundaries, but has still a finite volume,

V = 4πR2.

2. Expansion or contraction of sphere caused by variation of R =⇒ R

determines the scale of volumes and distances on S 2.

R is called the scale factor

3. Positions on S 2 are defined, e.g., by r and θ, independent on the value of R

r and θ are called comoving coordinates

4. Although the metrics Eq. (4.10), (4.12), and (4.14) look very different, they

still describe the same space =⇒ that’s why physics should be covariant, i.e.,

independent of the coordinate system!
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FRW Metric 9

2D Metrics

The hyperbolic plane, H 2, is defined by

x2
1 + x2

2 − x2
3 = −R2 (4.15)

If we work in Minkowski space, where

ds2 = dx2
1 + dx2

2 − dx2
3 (4.16)

then

= dx2
1 + dx2

2 −
(x1 dx1 + x2 dx2)

2

R2 + x2
1 + x2

2

(4.17)

=⇒substitute R→ iR (where i =
√
−1) to obtain same form as for sphere

(eq. 4.11)!

Therefore,

ds2 = R2

{
dr2

1 + r2
+ r2 dθ2

}
(4.18)
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FRW Metric 10

2D Metrics

The analogy to spherical coordinates on the hyperbolic plane are given by

x1 = R sinh θ cosφ

x2 = R sinh θ sinφ

x3 = R cosh θ

(4.19)

(θ ∈ [−∞,+∞], φ ∈ [0, 2π]).

A session with Maple (see handout) will convince you that these coordinates give

ds2 = R2
{

dθ2 + sinh2 θ dφ2
}

(4.20)

Remark:

H 2 is unbound and has an infinite volume.



4–12

Transcript of Maple session to obtain Eq. (4.20):
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FRW Metric 11

2D Metrics

To summarize:

Sphere: ds2 = R2

{
dr2

1− r2
+ r2 dθ2

}
(4.12)

Plane: ds2 = R2
{

dr2 + r2 dθ2
}

(4.6)

Hyperbolic Plane: ds2 = R2

{
dr2

1 + r2
+ r2 dθ2

}
(4.18)

=⇒ All three metrics can be written as

ds2 = R2

{
dr2

1− k r2
+ r2 dθ2

}
(4.21)

where k defines the geometry:

k =





+1 spherical

0 planar

−1 hyperbolic

(4.22)
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FRW Metric 12

2D Metrics

For “spherical coordinates” we found:

Sphere: ds2 = R2
{

dθ2 + sin2 θ dφ2
}

(4.14)

Plane: ds2 = R2
{

dθ2 + θ2dφ2
}

(4.6)

Hyperbolic Plane: ds2 = R2
{

dθ2 + sinh2 θ dφ2
}

(4.20)

=⇒ All three metrics can be written as

ds2 = R2
{

dθ2 + S2
k(θ) dφ2

}
(4.23)

where

Sk(θ) =





sin θ for k = +1

θ for k = 0

sinh θ for k = −1

and Ck(θ) =
√

1− kS2
k(θ) =





cos θ for k = +1

1 for k = 0

cosh θ for k = −1

(4.24)

The cos-like analogue of Sk, Ck, will be needed later

Note that, compared to the earlier formulae, some coordinates have been renamed. This is confusing, but
legal. . .
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FRW Metric 13

RW Metric

• Cosmological principle + expansion =⇒ ∃ freely expanding cosmical coordinate system.

– Observers =: fundamental observers

– Time =: cosmic time

This is the coordinate system in which the 3K radiation is isotropic, clocks can be synchronized, e.g., by
adjusting time to the local density of the universe.

=⇒ Metric has temporal and spatial part.

This also follows directly from the equivalence principle.

• Homogeneity and isotropy =⇒ spatial part is spherically symmetric:

dψ2 := dθ2 + sin2 θ dφ2 (4.25)

• Expansion: ∃ scale factor, R(t) =⇒ measure distances using comoving coordinates.

=⇒ metric looks like

ds2 = c2 dt2 −R2(t)
[
f 2(r) dr2 + g2(r) dψ2

]
(4.26)

where f (r) and g(r) are arbitrary.
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FRW Metric 14

RW Metric

Metrics of the form of eq. (4.26) are called Robertson-Walker (RW) metrics

(introduced in 1935).

Previously studied by Friedmann and Lemaître. . .

One common choice is

ds2 = c2 dt2 −R2(t)
[

dr2 + S2
k(r) dψ2

]
(4.27)

where

R(t): scale factor, containing the physics

t: cosmic time

r, θ, φ: comoving coordinates (remember Eq. (4.25) (dψ2 := dθ2 + sin2 θ dφ2)!)

k: defines curvature, integer

Sk(r) was defined in Eq. (4.24).

Remark: θ and φ describe directions on sky, as seen from the arbitrary center of the coordinate

system (=us), r can be interpreted as a radial coordinate.
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FRW Metric 15

RW Metric

The RW metric defines an universal coordinate system tied to expansion of

space:

r R(t2)r R(t1)
B(x2,y2) B(x2,y2)

. .

A(x1,y1)

A(x1,y1)

Scale factor R(t) describes evolution of universe.

• r is called the comoving distance.

• D(t) := r ·R(t) is called the proper distance,

(e.g., r ·R(t) is measured in Mpc)
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FRW Metric 16

RW Metric

Other forms of the RW metric are also used:

1. Substitution Sk(r) −→ r gives

ds2 = c2 dt2 −R2(t)

{
dr2

1− kr2
+ r2 dψ2

}
(4.28)

(i.e., other definition of comoving radius r, which is still dimensionless).

2. A metric with a dimensionless scale factor,

a(t) :=
R(t)

R(t0)
=
R(t)

R0
(4.29)

(where t0 = today, i.e., a(t0) = 1), gives

ds2 = c2 dt2 − a2(t)

{
dr2 +

S2
k(R0r)

R2
0

dψ2

}
(4.30)
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FRW Metric 17

RW Metric

3. Using a(t) and the substitution Sk(r) −→ r is also possible:

ds2 = c2 dt2 − a2(t)

{
dr2

1− k · (R0r)2
+ r2 dψ2

}
(4.31)

The units of R0r are Mpc =⇒ Used for observations!

4. Replace cosmic time, t, by conformal time, dη = dt/R(t)

=⇒ conformal metric,

ds2 = R2(η)

{
dη2 − dr2

1− kr − r
2 dψ2

}
(4.32)

Theoretical importance of this metric: For k = 0, i.e., a flat space, the RW

metric = Minkowski line element × R2(η) =⇒ Equivalence principle!
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FRW Metric 18

RW Metric

5. Finally, the metric can also be written in the isotropic form,

ds2 = c2dt2 − R(t)

1 + (k/4)r2

{
dr2 + r2dψ2

}
(4.33)

Here, the term in {. . .} is just the line element of a 3d-sphere =⇒ isotropy!

Note: There are as many notations as authors, e.g., some use a(t) where we

use R(t), etc. =⇒ Be careful!

Note 2: Local homogeneity and isotropy (i.e., within a Hubble radius, r = c/H0),

do not imply global homogeneity and isotropy =⇒ Cosmologies with a non-trivial

topology are possible (e.g., also with more dimensions. . . ).
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4–21

Observational Quantities 1

Hubble’s Law

Hubble’s Law follows from the variation of R(t):

R(t+
dt

)r

R(t)
r

r r
Small scales =⇒ Euclidean geometry. Then the proper distance between two observers is:

D(t) = d ·R(t) (4.34)

where d: comoving distance.

Expansion =⇒ proper separation changes:

∆D

∆t
=
R(t + ∆t)d−R(t)d

∆t
=⇒ lim

∆t→0
=⇒ v =

dD

dt
= Ṙ d =

Ṙ

R
D =: H D (4.35)

=⇒ Identify local Hubble “constant” as

H =
Ṙ

R
= ȧ(t) (a(t) from Eq. 4.29, a(today) = 1) (4.36)

Since R = R(t) =⇒H is time-dependent!
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Observational Quantities 2

Redshift, I

The cosmological redshift is a consequence of the expansion of the universe:

The comoving distance is constant, thus in terms of the proper distance:

d =
D(t = today)

R(t = today)
=
D(t)

R(t)
= const. (4.37)

Set a(t) = R(t)/R(t = today), then eq. (4.37) implies

λobs =
λemit

aemit
(4.38)

(λobs: observed wavelength, λemit: emitted wavelength)

Thus the observed redshift is

z =
λobs − λemit

λemit
=
λobs

λemit
− 1 =

νemit

νobs
− 1 (4.39)

=⇒ 1 + z =
1

aemit
=
R(t = today)

R(t)
=
νemit

νobs
(4.40)

Light emitted at z = 1 was emitted when the universe was half as big as today!

z: measure for relative size of universe at time the observed light was emitted.
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Note that the definition of H allows us to derive Hubble’s relation for the case of small v, i.e., v � c. In this case, the red-shift is

z =
v

c
=⇒ z =

Hd

c
(4.41)

An alternative derivation of the cosmological redshift follows directly from general relativity, using the basic GR fact that for photons ds2 = 0. Inserting this into the metric,
and assuming without loss of generality that dψ2 = 0, one finds

0 = c2 dt2 −R2(t) dr2 =⇒ dr = ± c dt

R(t)
(4.42)

Since photons travel forward, we choose the +-sign.

temit

temit+∆ te
tobs

tobs+∆ to

The comoving distance traveled by photons emitted at cosmic times temit and temit + ∆te is

r1 =

∫ tobs

temit

c dt

R(t)
and r2 =

∫ tobs+∆to

temit+∆te

c dt

R(t)
(4.43)
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But the comoving distances are equal, r1 = r2! Therefore

0 =

∫ tobs

temit

c dt

R(t)
−
∫ tobs+∆to

temit+∆te

c dt

R(t)
(4.44)

=

∫ temit+∆te

temit

c dt

R(t)
−
∫ tobs+∆to

tobs

c dt

R(t)
(4.45)

If ∆t small =⇒ R(t) ≈ const.:

=
c ∆te
R(temit)

− c ∆to
R(tobs)

(4.46)

For a wave: c∆t = λ, such that
λemit

R(temit)
=

λobs

R(tobs)
⇐⇒ λemit

λobs
=
R(temit)

R(tobs)
(4.47)

From this equation it is straightforward to derive Eq. (4.39).
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4–23

Observational Quantities 3

Redshift, II

Outside of the local universe: Eq. (4.40) only valid interpretation of z.

=⇒ It is common to interpret z as in special relativity:

1 + z =

√
1 + v/c

1− v/c
This is WRONG

(4.48)

Redshift is due to expansion of space, not due to motion of galaxy.

What is true is that z is accumulation of many infinitesimal red-shifts à la Eq. (4.41), see, e.g., Peacock
(1999).
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4–24

Observational Quantities 4

Time Dilatation

For light, D = c ∆t. Then a consequence of Eq. (4.37) is

c ∆temit

R(temit)
=
c ∆tobs

R(tobs)
=⇒ dt

R
= const. (4.46)

In other words:
dtobs

dtemit
=
R(tobs)

R(temit)
= 1 + z (4.49)

=⇒ Time dilatation of events at large z.

This cosmological time dilatation has been observed in the light curves of supernova outbursts.

All other observables apart from z (e.g., number density N(z), luminosity

distance dL, etc.) require explicit knowledge of R(t)

=⇒ Need to look at the dynamics of the universe.
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4–25

Dynamics 1

Friedmann Equations, I

General relativistic approach: Insert metric into Einstein equation to obtain

differential equation for R(t):

Einstein equation:

Rµν −
1

2
Rgµν︸ ︷︷ ︸

Gµν

=
8πG

c4
Tµν + Λgµν (4.50)

where

gµν: Metric tensor (ds2 = gµν dxµ dxν)

Rµν: Ricci tensor (function of gµν)

R: Ricci scalar (function of gµν)

Gµν: Einstein tensor (function of gµν)

Tµν: Stress-energy tensor, describing curvature of space due to fields present

(matter, radiation,. . . )

Λ: Cosmological constant

=⇒Messy, but doable
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4–26

Dynamics 2

Friedmann Equations, II

r R
(t)

m

M

Here, Newtonian derivation of Friedmann equations: Dynamics

of a mass element on the surface of sphere of density ρ(t) and

comoving radius d, i.e., proper radius d ·R(t) (McCrea, 1937)

Mass of sphere:

M =
4π

3
(dR)3ρ(t) =

4π

3
d3ρ0 where ρ(t) =

ρ0

R(t)3
(4.51)

Force on mass element:

m
d2

dt2
(
dR(t)

)
= − GMm

(dR(t))2
= −4πG

3

dρ0

R2(t)
m (4.52)

Canceling m · d gives momentum equation:

R̈(t) = −4πG

3

ρ0

R(t)2
= −4πG

3
ρ(t)R(t) (4.53)

Multiplying Eq. (4.53) with Ṙ and integrating yields the energy equation:

1

2
Ṙ(t)2 = +

4πG

3

ρ0

R(t)
+ const. = +

4πG

3
ρ(t)R2(t) + const. (4.54)

where the constant can only be obtained from GR.
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4–27

Dynamics 3

Friedmann Equations, III

Problems with the Newtonian derivation:

1. Cloud is implicitly assumed to have rcloud <∞
(for rcloud →∞ the force is undefined)

=⇒ violates cosmological principle.

2. Particles move through space

=⇒ v > c possible

=⇒ violates SRT.

Why do we get correct result?

GRT −→ Newton for small scales and mass densities

Since universe is isotropic: scale invariance on Mpc scales

=⇒ Newton sufficient (classical limit of GR).

(In fact, point 1 above does hold in GR: Birkhoff’s theorem).
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4–28

Dynamics 4

Friedmann Equations, IV

The exact GR derivation of Friedmanns equation gives:

R̈ = −4πG

3
R

(
ρ +

3p

c2

)
+

[
1

3
ΛR

]

Ṙ2 = +
8πGρ

3
R2 − kc2 +

[
1

3
Λc2R2

] (4.55)

Notes:

1. For k = 0: Eq. (4.55) −→ Eq. (4.54).

2. k determines the curvature of space (and is not an integer here!).

3. The density, ρ, includes the contribution of all different kinds of energy (remember

mass-energy equivalence!).

4. There is energy associated with the vacuum, parameterized by the parameter Λ.

The evolution of the Hubble parameter is (Λ = 0):
(
Ṙ

R

)2

= H2(t) =
8πGρ

3
− kc2

R2
(4.56)
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4–29

Dynamics 5

The Critical Density, I

Solving Eq. (4.56) for k:

R2

c

(
8πG

3
ρ−H2

)
= k (4.57)

=⇒Sign of curvature parameter k only depends on density, ρ. With

ρc =
3H2

8πG
and Ω =

ρ

ρc
(4.58)

it is easy to see that:
Ω > 1 =⇒ k > 0 =⇒ closed universe

Ω = 1 =⇒ k = 0 =⇒ flat universe

Ω < 1 =⇒ k < 0 =⇒ open universe

ρc is called the critical density

For Ω ≤ 1 the universe will expand until∞,

For Ω > 1 we will see the “big crunch”.

Current value of ρc: ∼ 1.67× 10−24 g cm−3 (3. . . 10 H-atoms m−3).
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4–30

Dynamics 6

The Critical Density, II

Ω has a second order effect on the expansion:

Taylor series of R(t) around t = t0:

R(t)

R(t0)
=
R(t0)

R(t0)
+
Ṙ(t0)

R(t0)
(t− t0) +

1

2

R̈(t0)

R(t0)
(t− t0)2 (4.59)

The Friedmann equation Eq. (4.53) can be written

R̈

R
= −4πG

3
ρ = −4πG

3
Ω

3H2

8πG
= −ΩH2

2
(4.60)

Since H(t) = Ṙ/R (Eq. 4.36), Eq. (4.59) is

R(t)

R(t0)
= 1 +H0 (t− t0)−

1

2

Ω0

2
H2

0 (t− t0)2 (4.61)

where H0 = H(t0) and Ω0 = Ω(t0).

The subscript 0 is often omitted in the case of Ω.

Often, Eq. (4.61) is written using the deceleration parameter:

q :=
Ω

2
= −R̈(t0)R(t0)

Ṙ2(t0)
(4.62)
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4–31

Dynamics 7

Equation of state, I

Evolution of the universe determined by three different kinds of equation of state:

1. Matter: Normal (nonrelativistic) particles get diluted by expansion of the

universe:

ρm ∝ R−3 (4.63)

Matter is also often called dust by cosmologists.

2. Radiation: The energy density of radiation decreases because of volume

expansion and because of the cosmological redshift (Eq. 4.47:

λobs/λemit = νemit/νobs = R(tobs)/R(temit)) such that

ρr ∝ R−4 (4.64)

3. Vacuum: The vacuum energy density (=Λ) is independent of R:

ρv = const. (4.65)

Inserting these equations of state into the Friedmann equation and solving with the boundary

condition R(t = 0) = 0 then gives a specific world model.
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4–32

Dynamics 8

Equation of state, II

Current scale factor is determined by H0 and Ω0:

Friedmann for t = t0:

Ṙ2
0 −

8πG

3
ρR2

0 = −kc2 (4.66)

Insert Ω and note H0 = Ṙ0/R0

⇐⇒ H2
0R

2
0 −H2

0Ω0R
2
0 = −kc2 (4.67)

And therefore

R0 =
c

H0

√
k

Ω− 1
(4.68)

For Ω −→ 0, R0 −→ c/H0, the Hubble length.
For Ω = 1, R0 is arbitrary.

We now have everything we need to solve the Friedmann equation and

determine the evolution of the universe for k = 0, +1, and −1.



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

4–33

Dynamics 9

k = 0, Matter dominated

For the matter dominated, flat case (the Einstein-de Sitter case), the Friedmann equation is

Ṙ2 − 8πG

3

ρ0R
3
0

R3
R2 = 0 (4.69)

For k = 0: Ω = 1 and
8πGρ0

3
= Ω0H

2
0R

3
0 = H2

0R
3
0 (4.70)

Therefore, the Friedmann eq. is

Ṙ2 − H2
0R

3
0

R
= 0 =⇒ dR

dt
= H0R

3/2
0 R−1/2 (4.71)

Separation of variables and setting R(0) = 0,
∫ R(t)

0
R1/2 dR = H0R

3/2
0 t =⇒ 2

3
R3/2(t) = H0R

3/2
0 t =⇒ R(t) = R0

(
3H0

2
t

)2/3

(4.72)

Therefore, for k = 0, the universe expands until∞, its current age (R(t0) = R0) is given by

t0 =
2

3H0
(4.73)

Reminder: The Hubble-Time is H−1
0 = 9.78 Gyr/h.



4–33

For the matter dominated, closed case, Friedmanns equation is

Ṙ2 − 8πG

3

ρ0R
3
0

R
= −c2 ⇐⇒ Ṙ2 − H2

0R
3
0Ω0

R
= −c2 (4.74)

Inserting R0 from Eq. (4.68) gives

Ṙ2 − H2
0 c

3Ω0

H3
0 (Ω− 1)3/2

1

R
= −c2 (4.75)

which is equivalent to

dR

dt
= c

(
ξ

R
− 1

)1/2

with ξ =
c

H0

Ω0

(Ω0 − 1)3/2
(4.76)

With the boundary condition R(0) = 0, separation of variables gives

ct =

∫ R(t)

0

dR

(ξ/R− 1)1/2
=

∫ R(t)

0

√
R dR

(ξ −R)1/2
(4.77)

Integration by substitution gives the “cycloid solution”

R = ξ sin2 θ

2
=
ξ

2
(1− cos θ) and ct =

ξ

2
(θ − sin θ) (4.78)

where θ is an implicit parameter.

The age of the universe, t0, is obtained by solving

R0 =
c

H0(Ω0 − 1)1/2
=
ξ

2
(1− cos θ0)=

1

2

c

H0

Ω0

(Ω0 − 1)3/2
(1− cos θ0) (4.79)

(remember Eq. 4.68!). Therefore

cos θ0 =
2− Ω0

Ω0
⇐⇒ sin θ0 =

2

Ω0

√
Ω0 − 1 (4.80)

Inserting this into Eq. (4.78) gives

t0 =
1

2H0

Ω0

(Ω0 − 1)3/2

[
arccos

(
2−Ω0

Ω0

)
− 2

Ω0

√
Ω0 − 1

]
(4.81)
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The cycloid solution shows that for Ω > 1, the universe has a finite lifetime, i.e., it expands to a maximum and then becomes smaller and dies in a “big crunch”. The max.
expansion occurs at θ = π, with a maximum scale factor of

Rmax = ξ =
c

H0

Ω0

(Ω0 − 1)3/2
(4.82)

The big crunch will happen at θ = 2π, such that the lifetime of the closed universe is

tlife =
π

H0

Ω0

(Ω0 − 1)3/2
(4.83)
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4–34

Dynamics 10

k = +1, Matter dominated, I

-20 0 20 40 60
t-t0 (arbitrary units)

0.0

0.5

1.0

1.5

R
(t

)/
R

(t
0)

Ω=5 Ω=3

Ω=10
For the closed universe,

one finds

R =
ξ

2
(1− cos θ)

ct =
ξ

2
(θ − sin θ)

(4.78)

Note that R is a cyclic

function

=⇒ The closed universe has a finite lifetime, given by

tlife =
π

H0

Ω0

(Ω0 − 1)3/2
(4.83)
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4–35

Dynamics 11

k = +1, Matter dominated, II

1.5 2.0 2.5 3.0 3.5 4.0
Ω

4.5

5.0

5.5

6.0

6.5
t 0

/h
 [G

yr
]

Age of a closed and matter dominated universe.
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4–36

Dynamics 12

k = −1, Matter dominated, I

Finally, the matter dominated, open case. This case is very similar to the case of k = +1:

For k = −1, the Friedmann equation becomes

dR

dt
= c

(
ζ

R
+ 1

)1/2

(4.84)

where

ζ =
c

H0

Ω0

(1− Ω0)3/2
(4.85)

Separation of variables gives after a little bit of algebra

R =
ζ

2
(cosh θ − 1)

ct =
ζ

2
(sinh θ − 1)

(4.86)

where the integration was again performed by substitution.

Note: θ here has nothing to do with the coordinate angle θ!
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4–37

Dynamics 13

k = −1, Matter dominated, II

0.2 0.4 0.6 0.8
Ω

6

7

8

9

10

t 0
/h

 [G
yr

]

To obtain the age of the

universe, note that at the

present time,

cosh θ0 =
2− Ω0

Ω0

sinh θ0 =
2

Ω0

√
1− Ω0

(4.87)

(identical derivation as that

leading to Eq. 4.79)

therefore,

t0 =
1

2H0

Ω0

(1− Ω0)3/2
·
{

2

Ω0

√
1− Ω0 − ln

(
2− Ω0 + 2

√
1− Ω0

Ω0

)}
(4.88)
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4–38

Dynamics 14

Summary

For the matter dominated case, our results from Eqs. (4.78), and (4.86) can be written with the

functions Sk and Ck (Eq. 4.24) in form of the cycloid solution:

R = kR (1− Ck(θ))
ct = kR (θ − Sk(θ))

(4.89)

with

Sk(θ) =





sin θ

θ

sinh θ

and Ck(θ) =





cos θ for k = +1

1 for k = 0

cosh θ for k = −1

(4.24)

and where the characteristic radius, R, is given by

R =
c

H0

Ω0/2

(k (Ω0 − 1))3/2
(4.90)

Notes:

1. Eq. (4.89) can also be derived as the result of the Newtonian collapse/expansion of a

spherical mass distribution.

2. θ is called the development angle, it is equal to the conformal time (Eq. (4.32)).



0.0 0.5 1.0 1.5
ct/2πR

0.1
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McCrea, W. H., & Milne, E. A., 1934, Quart. J. Math. (Oxford Series), 5, 73

Silk, J., 1997, A Short History of the Universe, Scientific American Library 53, (New York: W. H. Freeman)
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5–2

Classical Cosmology 1

Classical Cosmology

To understand what universe we live in, we need to determine observationally

the following numbers:

1. The Hubble constant, H0

=⇒ Requires distance measurements.

2. The current density parameter, Ω0

=⇒ Requires measurement of the mass density.

3. The cosmological constant, Λ

=⇒ Requires acceleration measurements.

4. The age of the universe, t0, for consistency checks

=⇒ Requires age measurements.

The determination of these numbers is the realm of classical cosmology.

First part: Distance determination and H0!
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5–3

Distance Determination 1

Introduction, I

Distances are required for determination of H0.

=⇒Need to measure distances out to ∼200 Mpc to obtain reliable values.

To get this far: cosmological distance ladder.

1. Trigonometric Parallax and Moving Cluster

2. Main Sequence Fitting

3. RR Lyr

4. Baade-Wesselink

5. Cepheids

6. (Light echos)

7. Brightest Stars

8. Type Ia Supernovae

9. Tully-Fisher

10. Dn-σ for ellipticals

11. Brightest Cluster Galaxies

12. Gravitational Lenses

Still the best reference on this subject is ROWAN-ROBINSON, M., 1985, The Cosmological

Distance Ladder, New York: Freeman.



Tully−Fisher

LMC/SMC Cepheids

Pleiades

F−Star
Parallax

SBF Novae

Local Group Cepheids

Cluster Cepheids

Hyades
Subdwarf Parallax

Glob. Cluster RR Lyr

RR Lyr Stat. Parall.

Local Group RR Lyr

GCLF

D−Sigma Relation

PNLF

LSC Cepheids

SN Ia

Red SG

0H  /Galaxy Luminosity Function

SN
1987 A

Stars

100 pc

100 kpc

1 kpc

10 kpc

1 Mpc

10 Mpc

LG
LS

C
M

ilk
y 

W
ay

(after Jacoby et al., 1992, Fig. 1)
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5–5

Distance Determination 3

Units

Basic unit of length in astronomy: Astronomical Unit (AU).

Colloquial Definition: 1 AU = mean distance Earth–Sun.

Measurement: (Venus) radar ranging, interplanetary satellite positions,

χ2 minimization of N -body simulations of solar system

1 AU ∼ 149.6× 106 km

In the astronomical system of units (IAU 1976), the AU is defined via Gaussian gravitational

constant (k), where the acceleration

r̈ = −k
2(1 +m)r

r3

where k := 0.01720209895, leading to a♁ = 1.00000105726665, and

1 AU=1.4959787066× 1011 m (Seidelmann, 1992).

Reason for this definition: k much better known than G.

(2006 CODATA: G = 6.67428(67)× 10−11 m3 kg−1 s−2, so only known to 4 significant digits)
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5–6

Geometric Methods 1

Trigonometric Parallax, I

sin bπ

d

r

π π

after Rowan-Robinson (1985, Fig. 2.1)

Motion of Earth around Sun =⇒ Parallax

produces apparent motion by amount

tanπ ∼ π = r♁/d (5.1)

π is called the trigonometric parallax, and

not 3.141!

If star is at ecliptic latitude b, then ellipse with
axes π and π sin b.

Measurement difficult: π . 0.76′′ (αCen).

Define unit for distance:

Parsec: Distance where 1 AU has

π = 1′′. 1 pc = 206265 AU =

3.08× 1018 cm = 3.26 ly
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5–7

Geometric Methods 2

Trigonometric Parallax, II

Best measurements to date: Hipparcos satellite (1989–1993)

• systematic error of position: ∼0.5 mas for stars brighter 9 mag

• effective distance limit: 1 kpc

• standard error of proper motion: ∼1 mas yr−1

• broad band photometry

• narrow band: B− V, V− J

• magnitude limit: 12 mag

• complete to mag: 7.3–9.0

Results available at

� � ��� � � � � � � � � 
 
 �
� � 
  �

� � � � � � � � � � �
�� �� � � � � � ��� �� � � �� 	
 �

Hipparcos catalogue: 118 218 objects with milliarcsecond precision.

Tycho catalogue: 2 539 913 stars with 20–30 mas precision, two-band

photometry (99% complete down to 11 mag)
Revised Hipparcos calibration: see van Leeuwen (2007).

http://www.rssd.esa.int/index.php?project=HIPPARCOS


GAIA (ESA mission, to be launched 2011 Dec on Soyuz from Kourou):    

10 kpc 20 kpc

Horizon for distances
accurate to 10 per cent

Mass of galaxy from
rotation curve at 15 kpc 

Horizon for detection of
Jupiter mass planets (200 pc)

Sun
30 open clusters

within 500 pc

Dynamics of disc,
spiral arms, and bulge

Horizon for proper motions
accurate to 1 km/s

Dark matter in disc measured
from distances/motions of K giants

1000 million objects
measured to I = 20

>20 globular clusters
Many thousands of Cepheids and RR Lyrae

1 microarcsec/yr = 300 km/s at z = 0.03
(direct connection to inertial)

General relativistic light-bending determined to 1 part in 106

Proper motions in LMC/SMC
individually to 2-3 km/s

GAIA: ∼ 4µarcsec precision, 4 color to V = 20 mag, 109 objects.



ESA/M. Perryman

Development of the precision of astronomical position measurements



© Till Credner



Source: ESA
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Geometric Methods 7

Moving Cluster

To convergent point

v
vr λ

λ

Sun

Star

µ Perspective effect of spatial motion towards convergent

point:

tanλ =
vt

vr
=
µd

vr
(5.2)

or
d

1 pc
=
vr/(1 km/s) tanλ

4.74µ/(1′′/a)
(5.3)

Problem: determination of convergent point

Less error prone: moving cluster method = rate of

variation of angular diameter of cluster:

θ̇d = θvr (5.4)

Observation of proper motions gives

θ̇

θ
=

dµα
dα

=
dµδ
dδ

(5.5)

where µα,δ proper motion in α and δ. Therefore, from Eq. (5.4),

d = vr
θ̇

θ
(5.6)



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

5–13

Geometric Methods 8

Moving Cluster

Source: ESA

Application: Distance to Hyades.

Tip of “arrow”: Position of stars in

100000 years.

Hanson (1980) finds from this a

distance of 46 pc

However: Hipparcos: geometric

distance to Hyades is

d = 46.34± 0.27 pc from parallax

measurements.

=⇒Moving cluster method only of

historic interest.
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Interlude 1

Interlude

Parallax and Moving Cluster: geometrical methods.

All other methods (exception: light echoes): standard candles.

Requirements for standard candles (Mould, Kennicutt, Jr. & Freedman, 2000):

1. Physical basis should be understood.

2. Parameters should be measurable objectively.

3. No corrections (“fudges”) required.

4. Small intrinsic scatter (=⇒ requiring small number of measurements!).

5. Wide dynamic range in distance.
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Interlude 2

Magnitudes

Assuming isotropic emission, distance and luminosity are related (“inverse

square law”) =⇒ luminosity distance:

F =
L

4πd2
L

(5.7)

where F is the measured flux (erg cm−2 s−1) and L the luminosity (erg s−1).

Definition also true for flux densities, Iν (erg cm−2 s−1 Å−1).

The magnitude is defined by

m = A− 2.5 log10F (5.8)

where A is a constant used to define the zero point (defined by m = 0 mag for

Vega).

For a filter with transmission function φν ,

mi = Ai − 2.5 log

∫
φνFν dν (5.9)

where, e.g., i = U, B, V.
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Interlude 3

Magnitudes

To enable comparison of luminosities: define

absolute magnitude M = magnitude at distance 10 pc

Thus, since m = A− 2.5 log(L/4πd2),

M = m− 5 log

(
dL

10 pc

)
(5.10)

The difference m−M is called the distance modulus, µ0:

µ0 = DM = m−M = 5 log

(
dL

10 pc

)
(5.11)

Often, distances are given in terms of m−M , and not in pc.

DM [mag] 3 5 10 15 20 25 30

d 40 pc 100 pc 1 kpc 10 kpc 100 kpc 1 Mpc 10 Mpc
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Standard Candles: Galactic Distances 1

Main Sequence Fitting, I

after Rowan-Robinson (1985, Fig. 2.11)

All open clusters are

comparably young

=⇒Hertzsprung Russell

Diagram (HRD)

dominated by Zero Age

Main Sequence (ZAMS).

=⇒Measure HRD (or Color

Magnitude Diagram;

CMD), shift magnitude

scale until main

sequence aligns

=⇒distance modulus.
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Standard Candles: Galactic Distances 2

Main Sequence Fitting, II

0.0

−0.1

0.1

0.2

δ(
U

−
B

)

0.5 0.0 −0.5 −1.0 −1.5 −2.0

[Fe/H]
(after Rowan-Robinson, 1985, Fig. 2.12)

Caveats:

1. Location of ZAMS more age dependent

than expected (van Leeuwen, 1999).

2. interstellar extinction

=⇒ µ0 = µV − AV, where µV, AV

DM/extinction measured in V-band.

3. metals: line blanketing (change in stellar

continuum due to metal absorption

lines, see figure)

=⇒ Changes color

=⇒ horizontal shift in CMD.

van den Bergh (1977): ZHyades ∼ 1.6Z�, while other open clusters have solar metallicity =⇒ Cepheid DM
were overestimated by 0.15 mag.

4. identification of unevolved stars crucial (evolution to larger magnitudes on MS during stellar

life).

Currently: distances to ∼200 open clusters known (Fenkart & Binggeli, 1979), limit ∼7 kpc.





(M68, Straniero, Chieffi & Limongi, 1997, Fig. 11)

Globular clusters: HRD

different from open

clusters:

• population II

=⇒ Z � Z�
• evolved

Use theoretical HRDs

(isochrones) to obtain

distance.

For distant clusters: MS

unobservable

=⇒ position of horizontal

branch.
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Standard Candles: Galactic Distances 5

Baade-Wesselink

Basic principle (Baade, 1926): Assume black body

=⇒ Use color/spectrum to get kTeff

=⇒ Emitted intensity is Planckian, Bν

=⇒ Observed Intensity is Iν ∝ πR2
∗ · Bν.

Radius from integrating velocity profile of spectral lines:

R2 −R1 = p

∫ 2

1

v dt (5.12)

(p: projection factor between velocity vector and line of sight).

Wesselink (1947): Determine brightness for times of same color

=⇒ rather independent of knowledge of stellar spectrum (deviations from Bν).

Stars: Calibration using interferometric diameters of nearby giants.

Baade-Wesselink works for pulsating stars such as RR Lyr, Cepheids,

Miras, and expanding supernova remnants.
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Standard Candles: Galactic Distances 6

RR Lyr

RR Lyrae variables: Stars crossing

instability strip in HRD

=⇒ Variability (P ∼ 0.2 . . . 1 d)

=⇒ RR Lyr gap (change in color!).

Absolute magnitude of RR Lyr gap:

MV = 0.6, MB = 0.8 mag, i.e.,

LRR ∼ 50L�.
M determined from ZAMS fitting, statistical parallax, and
Baade-Wesselink method.

M2: Lee & Carney (1999, Fig. 2)
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Standard Candles: Galactic Distances 7

RR Lyr

Lightcurve shows characteristic color variations over

pulsation (temperature change!), and a fast rise,

slow decay behavior.
RR Lyr in GCs show bimodal number distribution due to a

metallicity effect:

• RRab with P > 0.5 d and most probable period of

Pab ∼ 0.7 d, and

• RRc, with P < 0.5 d and Pc ∼ 0.3 d.

M is larger for higher Z, i.e., metal-rich RR Lyr are fainter

=⇒ difference in RR Lyr from population I and II.

RR Lyr work out to LMC and other dwarf

galaxies of local group, however, used mainly

for globular clusters.

(Lee & Carney, 1999, Fig. 5)



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

5–24

Interlude 1

Interlude

Previous methods: Selection of methods for distances within Milky Way (and

Magellanic Clouds): Basis for extragalactic distance scale.

Primary extragalactic distance indicators: Distance can be calibrated

from observations within milky way or from theoretical grounds.

Primary indicators usually work within our neighborhood (i.e., out to Virgo cluster

at 15–20 Mpc).

Examples: Cepheids, light echos,. . .

Secondary extragalactic distance indicators: Distance calibrated from

primary distance indicators.

Examples: Type Ia SNe, methods based on integral galaxy properties.



source:

�� � �� � ��� � � � �� 	 �
 � � � �� � � ���  � 
  � � �� ��� � 	�� � � 
 � �� � 	

http://www.atlasoftheuniverse.com/galgrps.html


To get a feel for the distances in our “neighborhood”:

50 kpc: LMC, SMC, some other dwarf galaxies

Loke Kun Tan



700 kpc: M31 (Andromeda)

Robert Gendler
the largest astronomical picture ever taken, 21904× 14454 pixels

http://www.robgendlerastropics.com/M31NMmosaic.html


2–3 Mpc: Sculptor and M81 group

(groups similar to local group: a few large spirals, plus smaller stuff).

NGC 300 (Sculptor; Laustsen, Madsen, West, 1991)



5–7 Mpc: M101 group (“pinwheel galaxy”). Important because of high L.

Adam Block/NOAO/AURA/NSF



source:

�� � �� � ��� � � � �� 	 �
 � � � �� � � ���  � 
  � � �� �� � �� � 	 	 � �� � 	

http://www.atlasoftheuniverse.com/200mill.html


15–20 Mpc: Virgo cluster.
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Standard Candles: Extragalactic 1

Cepheids, I

Cepheids:

• Luminous stars (L ∼ 1000L�)

in instability strip
(He II–He III ionization)

• large intensity amplitude

variation,

• P ∼ 2. . . 150 d (easily

measurable).

Review: Feast (1999).

(Gieren et al., 2000, Fig. 3)



STScI PR94-49



STScI
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Standard Candles: Extragalactic 4

Cepheids, IV

© ASP

Henrietta Leavitt (1868–1921):

• Graduated from Radcliffe College

• from 1895: volunteer at Harvard

Observatory

• was ill, and partially deaf as a result

• 1902: back at Harvard Obs

• discovered 1777 variable stars in LMC

• 1912: discovered Period-Luminosity relation of Cepheids in SMC, but was not

allowed to follow this up

• later: defined Harvard photographic magnitude system

• died of cancer in 1921



X-axis: period in days, Y -axis: magnitude

Leavitt & Pickering, 1912, Periods of 25 Variable Stars in the Small Magellanic Cloud,

Harvard College Observatory Circular, vol. 173, pp. 1–3
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Standard Candles: Extragalactic 6

Cepheids, VI

1.0

14
12

10
8

1.5 2.0
log Period (days)

0.5

ap
pa

re
nt

 m
ag

ni
tu

de

Period-Luminosity (PL) relation:

MV ∝ −2.76 logP .

Low luminosity Cepheids have lower

periods.

There are indications that there is also an

influence of the color

=⇒ Period-Luminosity-Color (PLC) relation

Note: W Vir stars, also called type II Cepheids = “little
brother of Cepheids” (present in globular clusters). Less
luminous than normal Cepheids, similar PLC relation, first
confused with Cepheids =⇒ Cause for early thoughts of
much smaller universe.

PL relation for the LMC Cepheids (after Mould,

Kennicutt, Jr. & Freedman, 2000, Fig. 2).
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Standard Candles: Extragalactic 7

Cepheids, VII
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  � � �
� � � � 
 � �� � �  � � � �
 � � �� � � 	  � � � � � �� � � � � � 	

Typical variation of measurable parameters over one pulsation.

http://csep10.phys.utk.edu/astr162/lect/index.html
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Standard Candles: Extragalactic 8

Cepheids, VIII

Physics of Period-Luminosity-Color relation:

Star pulsates such that outer parts remain bound:

1

2

(
R

P

)2

.
GM

R
=⇒ M

R3
∝ P−2 (5.13)

where P period. Therefore:

P ∝ ρ−1/2 ⇐⇒ Pρ1/2 = Q (5.14)

(Q: pulsational constant, ρ ∝MR−3 mean density). But Radius R related to luminosity L:

L = 4πR2σT 4 =⇒ R ∝ L1/2T−2 (5.15)

Inserting everything into Eq. (5.14) gives:

PL−3T 3 = const.⇐⇒ logP − 3 logL + 3 log T = const. (5.16)

But: bolometric magnitude: Mbol ∝ − logL, and colors: B− V ∝ log T such that

c1 logP + c2Mbol + c3(B− V) = const. (5.17)

where c1,2,3 calibration constants.
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Standard Candles: Extragalactic 9

Cepheids, IX

Calibration: Need slope and zero point of PLC.

Slope: Observations of nearby galaxies (e.g., open clusters in LMC)

Zero point is difficult:

• Cepheids in galactic clusters, distance to these via ZAMS fitting

=⇒ problematic due to age dependency of ZAMS.

• Hipparcos: geometrical distances

=⇒ problematic due to low SNR (resulting in 9% systematic error.

• Baade-Wesselink using IR info (low metallicity dependence).

Typical relations (Mould et al., 2000, 32 Cepheids):

MV = −2.76 logP − 1.40 + C(Z)

MI = −3.06 logP − 1.81 + C(Z)
(5.18)

The metallicity (color) dependence is roughly

(m−M)true = (m−M)PL − γ logZ/ZLMC (5.19)

where γ = −0.11± 0.03 mag/dex (Z: metallicity) (=Cepheids with larger Z are fainter).
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Standard Candles: Extragalactic 10

Cepheids, X

Notes:

1. Is the pulsational constant a constant? (or is Q = Q(ρ, P )?):

=⇒ possible deviation from PLC, especially at high luminosity

=⇒ adds uncertainty at large distances.

2. MV depends on metallicity

=⇒ LMC Cepheids are bluer [ZLMC < Z�]), but the exact value of γ in

Eq. (5.19) is very uncertain.

For V and I magnitudes, most probably δ(m−M )0/δ[O/H] . −0.4 mag dex−1, however, others find
+0.75 mag dex−1, see Ferrarese et al. (2000) for details. . .

3. Stellar evolution unclear (multiple crossings of instability strip are possible).





1987 February: Supernova in Large Magellanic Cloud.



HST/NASA/ESA/STScI



STScI PR94-22

87 d after explosion: Ring (1.66′′ × 1.21′′) of ionized C and N around SN

=⇒ Excitation of C, N in ring-like shell (ejecta from red giant phase of progenitor?): “light echo”
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Standard Candles: Extragalactic 15

Light echos, V

Light echo: direct geometrical determination of distance to LMC possible:

r sin i

1

i

2

r

r

Time delay SN: close side of ring:

ct1 = r(1− sin i) = 86± 6 d (5.20)

Time delay SN: far side of ring:

ct2 = r(1 + sin i) = 413± 24 d (5.21)

The ring radius is:

r = c
t1 + t2

2
= 250± 12 lt d (5.22)

and the inclination is:

sin i =
t2 − t1
t1 + t2

=⇒ i ∼ 41◦ (5.23)

(From ring-geometry: cos i = 1.′′21/1.′′66 =⇒ i ∼ 43◦)

Thus from angular size of ring:

1.′′66 =
r cos i

d
=⇒ d = 52± 3 kpc (5.24)



Cepheid Mirae Cepheid RR Lyr

Carbon LPV

Red Clump

van Leeuwen

Whitelock

Luri
Luri

Year (publication)

Fernley

Stanek

Udalksi

Girardi

Luri

42 kpc

18
18

.2
18

.4
18

.6
18

.8
19

Di
st

an
ce

 M
od

ul
us

 (m
ag

)

1997 1998

55 kpc

Luri

Udalksi

Bergeat

Madore

Subdwarf

Gratton

Reid
Feast

LMC distance:

“anchor point” of

extragalactic

distance scale.

After Gaia Science
Workgroup

Strong dependence on Hipparcos calibration.

DM ranges between 18.7± 0.1 mag (Feast & Catchpole) and 18.57± 0.11 mag (Madore & Freedman)

Currently, the distance to the LMC is less well known than desirable.
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Standard Candles: Extragalactic 17

PN Luminosity Function, I

Planetary Nebulae have

empirical universal

luminosity function.

Measurement of “cutoff

magnitude” MPN

=⇒ Standard candle!
PN detection with narrow band
filter of O[III]λ5007Å.

(Ciardullo et al., 1989, Fig. 4)

N(M) ∝ e0.307M
(
1− e3(MPN−M)

)
(5.25)
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Standard Candles: Extragalactic 18

PN Luminosity Function, II

Result of calibration using

Cepheid distances (Ferrarese

et al., 2000):

Cutoff of luminosity function:

MPN = −4.58± 0.13 mag

(5.26)

Works out to ∼40 Mpc with 8 m class

telescope.

(Ferrarese et al., 2000, Fig. 3), left to right:
LMC, M31, NGC 300, M81, M101, NGC
3368, and several galaxy groups.



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

5–51

Standard Candles: Extragalactic 19

PN Luminosity Function, III

Caveats: Effects of metallicity, population age, parent galaxy most probably

small, but

• Contamination by H II regions (but distinguish using Hα/[O III] ratio.

• Background emission-line galaxies at z = 3.1

• intracluster PNe (i.e., PNe outside galaxies)



M83
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Standard Candles: Extragalactic 21

Brightest Stars, II

Brightest Stars= O, B, A supergiants, absolute magnitudes usable in local group,

although there is a large scatter.

Reason: there is an upper limit to stellar luminosity due to mass loss in

supergiants.

Possible Improvement: Strength of Balmer series lines. Hα and Hβ appear biased (class of

supergiants with anomalously strong Balmer lines?).

Problems:

• Contamination by foreground halo stars

=⇒ Choose stars with unusual color (rare, i.e. less foreground

contamination): B− V < 0.4 or B− V > 2.0 =⇒ Tip of Red Giant Branch

• Internal extinction.

• Scatter in max. L

=⇒ Average over brightest N stars (Sandage, Tammann: N = 3).

• Metallicity dependence.
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Standard Candles: Extragalactic 22

Brightest Stars, III

Tip of Red Giant Branch: Usable

within local group, possibly out to

Virgo.

Calibration:

MI = −4.06± 0.13 mag (5.27)

(Ferrarese et al., 2000, Fig. 1)
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Standard Candles: Extragalactic 23

Globular Clusters

Globular Cluster Luminosity Function is ∼Gaussian

=⇒ Use maximum of distribution (“turnover

magnitude”, MT) as standard candle.

From Virgo and Fornax Cepheid distances

(Ferrarese et al., 2000):

MT, V = −7.60± 0.25 mag (5.28)

Caveats:
1. MT depends on luminosity and type of host galaxy

(GC of dwarf galaxies weaker by ∼ 0.3 in V).
2. Metallicity of galaxy cluster influences M T.
3. Measurement difficult (need the weak GCs!).
4. Large scatter in data =⇒ Method rather unreliable.

(MW GCs, Abraham & van den Bergh, 1995, Fig. 1)
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Standard Candles: Extragalactic 24

Surface Brightness Fluctuations, I

For early type galaxies: Assume N stars in picture

element (pixel), with average flux f each.

=⇒ Mean pixel intensity: µ = Nf (5.29)

independent of distance, since N ∝ r2 and f ∝ r−2.

Standard deviation between pixels (Poisson!):

σ =
√
Nf ∝ r−1 (5.30)

and therefore

f =
σ2

µ
=

L

4πr2
(5.31)

which gives the distance r.

Review: Blakeslee, Ajhar & Tonry (1999).

Complication: Adjacent pixels not independent (point
spread function of telescope!)
=⇒ Use radial power spectrum to obtain σ2 and µ.

(Ajhar et al., 1997, Fig. 3d)
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Surface Brightness Fluctuations, II

Luminosity of galaxy dominated by Red

Giant Branch stars

=⇒ Strong wavelength and color

dependence

=⇒ Primary calibration: I-band plus

broad-band color dependency to

give standard candle.

Often also used: HST WFPC2 plus

F814W filter (close to I-band),

MF814W = (−1.70± 0.16)

+ (4.5± 0.3) [(V− I)0 − 1.15] (5.32)

Works out to ∼ 70 Mpc with HST.

(Ferrarese et al., 2000, Fig. 5)
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Novae, I

“classical nova”= explosion on

surface of white dwarf

Novae only in binary systems

=⇒ slow accretion of material onto

WD

=⇒ outer skin reaches Mcrit for

fusion

=⇒ explosion

=⇒ ejection of 10−6. . . 10−4M� with

v ∼ 500 km s−1

Explosion produces characteristic

lightcurve.

(Nova in M31, Arp, 1956, p. 18)
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Novae, II
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2.0 1.5 1.0 0.5

R57

R53 R36

R28

16.0

15.0

17.0

18.0

0.0

(after van den Bergh & Pritchet, 1986, Fig. 1).

Strong scatter in lightcurves (higher Lmax =⇒ faster decline, but typically ∼ 3× brighter than

Cepheids), but good Correlation luminosity vs. decline timescale (ti, time to reach

m(ti) = mmax + i). Calibration: galactic novae.



Supernovae have

luminosities

comparable to whole

galaxies:

∼ 1051 erg s−1 in light,

100× more in

neutrinos.

SN1994d (HST WFPC)
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Type Ia Supernovae, II

(Spectra of several SNe at maximum light Jha et al., 1999, Fig. 6)

Different

supernovae can

have very

similar spectra.

=⇒
Allows their

classification.



(Filippenko, 1997, Fig. 1); t: time after maximum light; τ : time after explosion;
P Cyg profiles give v ∼ 10000 km s−1

Rough classification

(Minkowski, 1941):

Type I: no hydrogen

in spectra;

subtypes Ia, Ib, Ic

Type II: hydrogen

present, subtypes

II-L, II-P
Note: pre 1985 subtypes Ia,
Ib had different definition
than today =⇒ beware when
reading older texts.



Early 
Spectra: No Hydrogen  / Hydrogen

SN I SN II
Si/ No Si

SN Ia He poor/He rich

~3 mos. spectra
He dominant/H dominant

“Normal” SNII

Light Curve decay
after maximum:
Linear / Plateau

1993J
1987K

1987A
1988A
1969L

1980K
1979C

1983N
1984L

1983I
1983V

1985A
1989B

Core Collapse  of 
a massive progenitor
with plenty of H .

SN IIPSN IIL

SN Ic SN Ib SN IIb

Theory

Core Collapse.
Outer Layers stripped
by winds (Wolf-Rayet Stars)
or binary interactions
Ib: H mantle removed
Ic: H & He removed

Core collapse.
Most (NOT all)  
H is removed during 
evolution by
tidal stripping.

Believed to originate
from deflagration  or
detonation  of an
accreting white dwarf.

courtesy M.J. Montes
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Type Ia Supernovae, V

(Filippenko, 1997, Fig. 3)

Light curves of SNe I

all very similar,

SNe II have much

more scatter.

SNe II-L (“linear”)

resemble SNe I

SNe II-P (“plateau”)

have const.

brightness to

within 1 mag for

extended period of

time.



940 950 960 970 980 990 1000

JD−2450000

12

10

14

16
B+1

U+2

V

R−1

I−2

m
ag

ni
tu

de

(SN 1998bu in M96, Jha et al., 1999, Figs. 2 and 4)



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

5–66

Standard Candles: Extragalactic 34

Type Ia Supernovae, VII

Clue on origin from supernova statistics:

• SNe II, Ib, Ic: never seen in ellipticals; rarely in S0; generally associated with

spiral arms and H II regions.

=⇒progenitor of SNe II, Ib, Ic: massive stars (& 8M�) =⇒ core collapse

• SNe Ia: all types of galaxies, no preference for arms, almost no scatter in

lightcurves

=⇒progenitor of SNe Ia: accreting carbon-oxygen white dwarfs, undergoing

thermonuclear runaway

Rule of thumb: 1. . . 3 SNe per galaxy and per century
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Type Ia Supernovae, VIII

C/O

C/O

Ni Ni

Si/S

C/O
Initial WD

Energy transport by heat
conduction over front

(v<<c_sound)
ignition of unburned fuel

ignition of unburned fuel by
compression in detonation

Deflagration Phase
(2...3sec)

Detonation Phase
(0.2...0.3sec)

after P. Höflich
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Type Ia Supernovae, IX

SN Ia = Explosion of CO white dwarf when pushed over Chandrasekhar

limit (1.4M�) (via accretion?).

=⇒ Always similar process

=⇒Very characteristic light curve: fast rise, rapid fall, exponential decay

(“FRED”) with half-time of 60 d.

60 d time scale from radioactive decay Ni56 → Co56 → Fe56 (“self calibration” of lightcurve if same amount of
Ni56 produced everywhere).

Calibration: SNe Ia in nearby galaxies where Cepheid distances known.

At maximum light:

MB = −18.33± 0.11 + 5 log h100 (L ∼ 109...10L�) (5.33)

Intrinsic dispersion: .0.25 mag (possibly due to size of clusters analyzed?!?)

Observable out to 1000 Mpc



November 20, 1995

October 30, 1995

 Supernova
“SN 1995ar”

Perlmutter et al.
Supernova Cosmology Project

Neigboring Galaxies
Before Supernova Explosion

Supernova
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Type Ia Supernovae, XI

1.0 1.5 2.0

−20

−19

−18

−17

−20

−19

−18

−17

M
m

ax
 −

 5
lo

g(
H o

/6
5)

−20

−19

−18

−17

1.0 1.5 2.0

B

V

I

B

V

II

∆m15(B)obs

(Phillips et al., 1999, Fig. 8)

Caveats:

1. Are they really identical?

=⇒ history of pre-WD star?

2. Correction for extinction in parent

galaxy difficult.

3. Baade-Wesselink for calibration

Eq. (5.33) depends crucially on

assumed (B− V)-Teff relation.

4. Some SN Iae spectroscopically

peculiar =⇒ Do not use these!

5. Decline rate and color vary, but

max. brightness and decline rate

correlate (see figure).



Lightcurves of Hamuy et al. SN Ia sample (18 SNe discovered within 5 d past

maximum, with 3.6 < log cz < 4.5, i.e., z < 0.1)



Lightcurves of Hamuy et al. SN Ia sample (18 SNe discovered within 5 d past

maximum, with 3.6 < log cz < 4.5, i.e., z < 0.1), after correction of systematic

effects and time dilatation (Kim et al., 1997).
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Type Ia Supernovae, XIV

Recalibration of SN Ia distances with Cepheids gives (Gibson et al., 2000):

logH0 = 0.2
{
Mmax

B − 0.720(±0.459)

· [∆mB,15,t − 1.1]− 1.010(±0.934)

· [∆mB,15,t − 1.1]2 + 28.653(±0.042)
}

(5.34)

where

∆mB,15,t = ∆mB,15 + 0.1E(B− V) (5.35)

where

∆mB,15: observed 15 d decline rate,

E(B− V): total extinction (galactic+intrinsic).

Eq. (5.34) valid for B-band, equivalent formulae exist for V and I.

Overall, the calibration is good to better than 0.2 mag in B.
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Tully-Fisher, I

B RV

(after Sakai et al.,
2000, Fig. 1)

Tully-Fisher relation for spiral galaxies: Width of 21 cm line of H correlated with galaxy luminosity:

M = −a log

(
W20

sin i

)
− b (5.36)

where W20: 20% line width (km s−1; typically W20 ∼ 300 km s−1), i inclination angle.

For the B- and I-Bands (Sakai et al., 2000):

B I

a 7.97± 0.72 9.24± 0.75

b 19.80± 0.11 21.12± 0.12
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Tully-Fisher, II

Qualitative Physics: Line width related to mass of galaxy: W/2 ∼ Vmax, where

Vmax max. velocity of rotation curve

=⇒ Assume M/L = const. (good assumption)

=⇒ width related to luminosity.

Detailed physical basis unknown. Might be related to galaxy formation (“hierarchical clustering”, see later).

I-band is better (less internal extinction).

Caveats:

1. Determination of inclination i.

2. Influence of turbulent motion within galaxy.

3. Constants dependent on galaxy type (Sa and Sb similar, Sc more luminous

by factor of ∼2).

4. Optical extinction.

5. Intrinsic dispersion ∼0.2 mag.

6. Barred Galaxies problematic.



“Faber-Jackson” law for

elliptical galaxies:
The luminosity L of an elliptical

galaxy scales with its intrinsic

velocity dispersion, σ, as L ∝ σ4.

Note that ellipticals have virtually no
Hydrogen

=⇒ cannot use 21 cm.

M32 (companion of Andromeda),

courtesy W. Keel

Ellipticals: MB = −19.38± 0.07− (9.0± 0.7)(logσ − 2.3) (5.37)

Lenticulars (Type S0): MB = −19.65± 0.08− (8.4± 0.8)(logσ − 2.3) (5.38)
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Dn-σ

The Faber-Jackson law is a specialized case of the more general Dn–σ-relation:

The intensity profile of an elliptical galaxy is given by de Vaucouleurs’ r1/4 law:

I(r) = I0 exp
(
−(r/r0)

1/4
)

=⇒ L =

∫
I ∝ I0r

2
0 (5.39)

Because of the virial theorem (Ekin = −Epot/2):

1

2
mσ2 = G

mM

r0
⇐⇒ σ2 ∝ M

r0
(5.40)

where σ: velocity dispersion.

Assume a mass-to-light ratio

M/L ∝Mα (5.41)

(α ∼ 0.25). and use r0 from Eq. (5.39) to obtain

L1+α ∝ σ4−4αIα−1
0 (5.42)

This is called the “fundamental plane” relationship (Dressler et al., 1987).
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Dn-σ

Observational version of the fundamental plane relationship: Instead of inserting

r0 and I0, measure diameter Dn of aperture to reach some mean surface

brightness (typically sky brightness, 20.75 mag arcsec−2 in B), and use

calibration.

Note: Assumptions are

1. M/L same everywhere.

2. ellipticals have same stellar population everywhere

Calibration paper: Kelson et al. (2000).
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Hubble Constant 1

Path to H0

To obtain H0, we need distances, and redshifts.

Redshifts: Trivial

Distances: Hubble Space Telescope Key Project on Extragalactic Distance

Scale.

Summary paper: Freedman et al. (2001), there are a total of 29 papers on the

HST key project!

Strategy:

1. Use high-quality candles: Cepheid variables as primary distance calibrator.

2. Calibrate secondary calibrators that work out to cz = 10000 km s−1:

• Tully-Fisher,

• Type Ia Supernovae,

• Surface Brightness Fluctuations,

• Fundamental-plane for Ellipticals.

3. Combine uncertainties from these methods.
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Hubble Constant 2

Velocity Field, I

Before determining H0: correct for influence of velocity field (cluster motion with

respect to comoving coordinates).

The observed redshift is given by

1 + z = (1 + zR)
(

1− v0

c
+
vG

c

)
(5.43)

where

v0: observer’s radial velocity in direction of galaxy

vG: radial velocity of the galaxy, difficult to find

zR: cosmological redshift

Older galaxy catalogues often attempt to correct the measured values of z to produce “corrected

redshifts”, e.g., by setting vG = 0 and

1 + z = (1 + zR)

(
1 +

v0

c

)
∼ 1 + zR −

v0

c
=⇒ zR ∼ z +

v0

c
(5.44)

since v0 was not well known before COBE =⇒ introduces unnecessary problems

=⇒ correction not used in recent redshift surveys! (see Harrison & Noonan, 1979, for details)



(COBE DMR; Bennett et al., 1996)

v0 is easy to find =⇒ Measure velocity of Earth with respect to 3 K radiation. COBE finds

∆T = 3.353± 0.024 mK of 3K black-body spectrum of T = 2.725± 0.020 K, using ∆T/T = v/c.

v0 = (369.1± 2.6) km s−1 · cos θCMB (5.45)

where θCMB = ∠(v,vCMB), and vCMR points towards

(l, b) = (264.◦26± 0.◦33, 48.◦22± 0.◦13)

(α, δ)J2000.0 = (11h12.m2± 0.m8,−7.◦06± 0.◦16)

in constellation Crater.



The constellation Crater (“Becher”) in Johan Elert Bode’s Sternatlas
(after Slawik/Reichert, Atlas der Sternbilder, Spektrum, 2004)
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Hubble Constant 5

Velocity Field, IV

To get feeling for vG out to Virgo, need to study

local velocity field surrounding local group and

beyond.

Two major velocity components:

1. Virgocentric infall (known since mid-1970s)

2. Motion towards great attractor (“Seven

Samurai”, 1980)

plus virialized galaxy motions within clusters.

General analysis: build maximum likelihood

model of velocity field including above

components plus Hubble flow. See Tonry et al.

(2000) for details.

Galaxy moves within local group with v ∼ 630 km s−1



Great Attractor

Velocity of local groupHubble
    Flow

Virgo Attractor

Decomposition of velocity

field: (Mould et al., 2000,

Tab. A1, note that Tonry

et al. 2000 find slightly

different values):
α1950.0 δ1950.0 v (km s−1)

Virgo 12h28m +12◦40′ 957

GA 13h20m +44◦00′ 4380

Shapley 13h30m +31◦00′ 13600
(v wrt. center of local

group; not taking Hubble

flow into account!).

(Tonry et al., 2000, Fig. 20)
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Hubble Constant 7

H from HST

83

67

75

Hubble Diagram for Cepheids (flow−corrected)
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500V
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]

0 10 20 30
Distance [Mpc]

1500

Freedman et al. (2001, Fig. 1)

To obtain H0:

1. Determine d with Cepheids

and HST

2. Determine “v”, corrected for

local velocity field

3. Draw Hubble-diagram

4. Regression Analysis =⇒ H0

Value from HST Key Project:

H0 = 75±10 km s−1 Mpc−1

(5.46)
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Hubble Constant 8

H from HST

Cepheids alone: nearby

=⇒ systematic uncertainties

due to local flow

correction and small

overall v

=⇒ use secondary candles to

get to larger distances.
Example: magnitude-redshift diagram,
analoguous to Hubble diagram
(m ∝ −5 log I , and I ∝ 1/r2 ∝ 1/z2

because of Hubble =⇒m ∝ log cz).

(SN Ia Hubble relations; left: full sample,
middle: excluding strongly reddened SN
Iae, right: same as middle, correcting for
light-curve shape Freedman et al., 2001,
Fig. 2)
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Hubble Constant 9

H from HST

Freedman et al. (2001, Fig. 4)

Combining all secondary

methods, best value found:

H0 = 72±8 km s−1 Mpc−1

(5.47)
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Hubble Constant 10

H from HST

H
   

[k
m

/s
/M

pc
]

45 50 55

60
70

80

0

TF

SN Ia

SBF

FP

LMC distance [kpc]

(after Mould et al., 2000, Fig. 5)

Major systematic uncertainty

in current H0 value: zero-point

of Cepheid scale, i.e., distance

to Large Magellanic Cloud.

Despite these problems:

=⇒All current values

approach

∼70 km s−1 Mpc−1, with

uncertainty ∼10%

H0 controversy is over



For larger distances: There are

deviations from Hubble-Relation!

Before we understand why: Need

to understand the Big-Bang itself!
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Motivation 1

CMBR

10−17
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10−22
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Wavelength (cm)
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FIRAS
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COBE satellite
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sounding rocket
White Mt. & South Pole
ground & balloon
optical

2.726  K  blackbody

I ν
(W

 m
−2

 s
r−1

 H
z−1

)

(after Smoot, 1997, Fig. 1)

Penzias & Wilson (1965):

“Measurement of Excess

Antenna Temperature at

4080 Mc/s”

=⇒ Cosmic Microwave

Background Radiation

(CMBR)

The CMBR spectrum is fully consistent with a pure Planckian with

temperature TCMBR = 2.728± 0.004 K: a relict of the hot big bang.
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6–3

Motivation 2

CMBR

Assumption: Early universe was hot and dense

=⇒ Equilibrium between matter and radiation.

Generation of radiation, e.g., in pair equilibrium,

γ + γ ←→ e− + e+ (6.1)

Equilibrium with electrons, e.g., via Compton scattering:

e− + γ −→ e− + γ (6.2)

where the electrons are linked to protons via Coulomb interaction.

Once density low and temperature below photoionization for Hydrogen,

H + γ ←→ p + e− (6.3)

Decoupling of radiation and matter =⇒ Adiabatic cooling of photon field.

Proof for these assumptions, and lots of gory details: this and the next few

lectures!
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6–4

Motivation 3

CMBR

Reminder: Planck formula for energy density of photons:

Bλ =
du

dλ
=

8πhc

λ5

1

exp(hc/kBTλ)− 1
(6.4)

(units: erg cm−3 Å
−1

), where

kB = 1.38×10−16 erg K−1 (Boltzmann) and h = 6.625×10−27 erg s (Planck)

(6.5)

For λ� hc/kBT : Rayleigh-Jeans formula:

Bλ ∼
8πkBT

λ4
(6.6)

(classical case, diverges for λ −→ 0, “Jeans catastrophe”).

The wavelength of maximum emission is given by Wien’s displacement law:

λmax = 0.201
hc

kBT
(6.7)
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6–5

Motivation 4

CMBR

The total energy density of the CMB is obtained by integration:

u =

∫ ∞

0

Bλ dλ =
8π5(kT )4

15h3c3
=

4σSB

c
T 4 = aradT

4 (6.8)

where

σSB = 5.670× 10−5 erg cm−3 K−4 Stefan-Boltzmann (6.9)

arad = 7.566× 10−15 erg cm−2 K−4 s−1 radiation density constant (6.10)

Since the energy of a photon is Eγ = hν = hc/λ, the total number density of

photons is

n =

∫ ∞

0

Bλ dλ

hc/λ
= 20.28T 3 photons cm−3 (6.11)

Thus, for today’s CMBR:

nCMBR = 400 photons cm−3 (6.12)
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6–6

Motivation 5

CMBR

For the CMBR today:

nCMBR = 400 photons cm−3 (6.12)

Compare that to gravitating matter (protons for now).

=⇒ critical density:

ρc =
3H2

8πG
= 1.88× 10−29h2 g cm−3= 1.13× 10−5 h2 protons cm−3 (4.58)

since mp = 1.67× 10−24 g.

=⇒ photons dominate the particle number:

nCMBR

nbaryons
=

3.54× 107

Ωh2
(6.13)

=⇒ baryons dominate the energy density:

uCMBR

ubaryons
=
aradT

4

Ωρcc2
=

4.20× 10−13

1.69× 10−8Ωh2
=

1

40260Ωh2
(6.14)

That’s why we talk about the matter dominated universe.
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6–7

Motivation 6

CMBR

The Universe was not always matter dominated:

Remember the scaling laws for the (energy) density of matter and radiation:

ρm ∝ R−3

ρr ∝ R−4 =⇒ ρr

ρm
∝ 1

R
(4.63, 4.64)

=⇒Photons dominate for large z, i.e., early in the universe!

Since 1 + z = R0/R (Eq. 4.40), matter-radiation equality was at

1 + zeq = 40260 Ωh2 (6.15)

(for h = 0.75, 1 + zeq = 22650)

The above definition of zeq is not entirely correct: neutrino background, which increases the background
energy density, is ignored (uν ∼ 68%uγ, see later).

Formally, matter-radiation equality defined from nbaryons = nrelativistic particles, giving

1 + zeq = 23900 Ωh2 (6.16)

(for h = 0.75, 1 + zeq = 13440).
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6–8

Motivation 7

CMBR

What happened to the temperature of the CMBR?

Compare CMBR spectrum today with earlier times.

(Differential) Energy density in [λ, λ + dλ]:

du = Bλdλ (6.17)

Cosmological redshift:
λ′

λ
=
R′

R
=

1

1 + z
= a (4.47)

Taking the expansion into account:

du′ =
du

a4
=

8πhc

a4λ5

dλ

exp(hc/kTλ)− 1
=

8πhc

a5λ5

adλ

exp(hc/kTλ) − 1

=
8πhc

λ′5
dλ′

exp(hca/kTλ′)− 1
= Bλ′(T/a) (6.18)

Therefore, the Planckian remains a Planckian, and the temperature of the CMBR scales as

T (z) = (1 + z)T0 (6.19)

The early universe was hot =⇒ Hot Big Bang Model!



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

6–9

Overview 1

Overview

a(t) t T [K] ρmatter Major Events

since BB [K] [g cm−3]

10−42 1030 Planck era, “begin of physics”

10−40...−30 1025 Inflation?

10−13 ∼ 10−5 s ∼ 1013 ∼ 109 generation of p-p−, and baryon

anti-baryon pairs from radiation

background

3× 10−9 1 min 1010 0.03 generation of e+-e− pairs out of

radiation background

10−9 10 min 3× 109 10−3 nucleosynthesis

10−4. . . 10−3 106...7 yr 103...4 10−21...−18 End of radiation dominated epoch

7× 10−4 107 yr 4000 10−20 Hydrogen recombines, decoupling of

matter and radiation

1 15× 109 yr 3 10−30 now



© J. Schombert



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

6–11

Big Bang Thermodynamics 1

Thermodynamics, I

Density in early universe is very high.

Physical processes (e.g., photon-photon pair creation, electron-positron annihilation etc.) all have

reaction rates

Γ ∝ nσv (6.20)

where

n: number density (cm−3)

σ: interaction cross-section (cm2)

v: velocity (cm s−1)

Thermodynamic equilibrium reached if reaction rate much faster than “changes” in the system,

Γ� H (6.21)

Where the Hubble parameter, H , is a good measure for (typical timescale of the Universe)1.

If thermodynamic equilibrium holds, then we can assume evolution of universe as sequence of

states of local thermodynamic equilibrium, and use standard thermodynamics.

Before looking at real universe, first need to derive certain useful formulae from relativistic

thermodynamics.
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6–12

Big Bang Thermodynamics 2

Thermodynamics, II

For ideal gases, thermodynamics shows that number density f (p) dp of particles with momentum

in [p, p + dp] is given by

f (p) =
1

exp ((E − µ)/kBT ) +a
(6.22)

where

a =





+1 : Fermions (spin=1/2, 3/2,. . . )

−1 : Bosons (spin=1, 2,. . . )

0 : Maxwell-Boltzmann

and where the energy includes the rest-mass:

E2 = |p|2 c2 +m2c4 (6.23)

µ is called the “chemical potential”. It is preserved in chemical equilibrium:

i + j ↔ k + l =⇒ µi + µj = µk + µl (6.24)

photons: multi-photon processes exist =⇒ µγ = 0.
particles in thermal equilibrium: µ = 0 as well because of the first law of thermodynamics,

dE = T dS − P dV + µ dN (6.25)

and in equilibrium system stationary with respect to changes in particle number N .
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6–13

Big Bang Thermodynamics 3

Thermodynamics, III

In addition to number density: different particles have internal degrees of freedom, g.

Examples:

photons: two polarization states =⇒ g = 2

neutrinos: one polarization state =⇒ g = 1

electrons, positrons: spin=1/2 =⇒ g = 2

Knowing g and f (p), it is possible to calculate interesting quantities:

particle number density: n =
g

(2π~)3

∫
f (p) d3p (6.26)

energy density: u = ρc2 =
g

(2π~)3

∫
E(p) f (p) d3p (6.27)

To calculate the pressure, remember that kinetic theory shows:

P =
n

3
〈pv〉 =

n

3

〈
p2c2

E

〉
(6.28)

such that

P =
g

(2π~)3

∫
p2c2

3E
f (p) d3p (6.29)
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6–14

Big Bang Thermodynamics 4

Thermodynamics, IV

Generally, we are interested in knowing n, u, and P in two limiting cases:

1. the ultra-relativistic limit, where kBT � mc2, i.e., kinetic energy dominates

the rest-mass

2. the non-relativistic limit, where kBT � mc2

Transitions between these limits (i.e., what happens during “cooling”) are usually

much more complicated =⇒ ignore. . .
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To derive the number density, the energy density, and the equation of state, note that Eq. (6.23) shows

E =
√
p2c2 +m2c4 (6.23)

such that
p =

√
E2 −m2c4/c (6.30)

Therefore
dE

dp
=

pc2

√
p2c2 +m2c4

(6.31)

from which it follows that
E dE = pc2 dp (6.32)

Thus the following holds
+∞y

−∞

d3p =

∫ ∞

0
4πp2 dp =

∫ ∞

mc2

4π

c3

(
E2 −m2c4

)1/2
E dE (6.33)

Going to a system of units where
c = kB = ~ = 1 (6.34)

to save me some typing, substitute these equations into Eqs. (6.26)–(6.29) to find

n =
g

2π2

∫ ∞

m

(
E2 −m2

)1/2
E dE

exp ((E − µ)/T )± 1
(6.35)

ρ =
g

2π2

∫ ∞

m

(
E2 −m2

)1/2
E2 dE

exp ((E − µ)/T )± 1
(6.36)

P =
g

6π2

∫ ∞

m

(
E2 −m2

)3/2
dE

exp ((E − µ)/T )± 1
(6.37)

which can in some limiting cases be expressed in a closed form (Kolb & Turner, 1990, eq. 3.52 ff.) (see following viewgraphs).
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6–15

Big Bang Thermodynamics 5

Thermodynamics, V

In the ultra-relativistic limit, kBT � mc2, and assuming µ = 0,

n =

{
ζ(3)
π2 g

(
kBT
~c

)3
Bosons

3
4
ζ(3)
π2 g

(
kBT
~c

)3
Fermions

(6.38)

u =

{
π2

30 g kBT
(
kBT
~c

)3
Bosons

7
8
π2

30 g kBT
(
kBT
~c

)3
Fermions

(6.39)

P = ρc2/3 = u/3 (6.40)

where ζ(3) = 1.202 . . ., and ζ(s) is Riemann’s zeta-function (see handout,

Eq. 6.48).

Eq. (6.40) is a simple result of the fact that in the relativistic limit, E ∼ pc. Inserting this and v = c into
Eq. (6.28) gives the desired result.

As expected, we find the T4 proportionality from the Stefan Boltzmann law!
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Obtaining the previous formulae is an exercise in special functions. For example, the T � m, T � µ case for ρ for Bosons (Eq. 6.39) is obtained as follows (setting
c = kB = ~ = 1):

ρBoson =
g

2π2

∫ ∞

m

(
E2 −m2

)1/2
E2 dE

exp ((E − µ)/T )± 1
(6.41)

because of T � µ

≈ g

2π2

∫ ∞

m

(
E2 −m2

)1/2
E2 dE

exp(E/T ) ± 1
(6.42)

for Bosons, choose −1, and substitute x = E/T :

=
g

2π2

∫ ∞

m/T

(
x2T 2 −m2

)1/2
x2T 3 dx

exp(x)− 1
(6.43)

Since T � m,

≈ g

2π2

∫ ∞

0

x3T 4 dx

exp(x)− 1
(6.44)

=
gT 4

2π2

∫ ∞

0

x3 dx

exp(x)− 1
(6.45)

=
gT 4

2π2
· 6ζ(4) (6.46)

=
π2

30
gT 4 (6.47)

where ζ(s) is Riemann’s zeta-function, which is defined by (Abramowitz & Stegun, 1964)

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

exp(x)− 1
dx for Re s > 1 (6.48)

where Γ(x) is the Gamma-function. Note that ζ(4) = π4/90.
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For Fermions, everything is the same except for that we now have to choose the + sign. The equivalent of Eq. (6.45) is then

ρFermi =
gT 4

2π2

∫ ∞

0

x3 dx

exp(x) + 1
(6.49)

Now we can make use of formula 3.411.3 of Gradstein & Ryshik (1981),

∫ ∞

0

xν−1 dx

exp(µx) + 1
=

1

µν
(1− 21−ν)Γ(ν)ζ(ν) for Re µ, ν > 1 (6.50)

to see where the additional factor of 7/8 in Eq. (6.39) comes from.
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6–16

Big Bang Thermodynamics 6

Thermodynamics, VI

In the non-relativistic limit: kBT � mc2

=⇒ can ignore the ±1 term in the denominator

=⇒ Same formulae for Bosons and Fermions!

n =
2g

(2π~)3
(2πmkBT )3/2e−mc

2/kBT (6.51)

u = nmc2 (6.52)

P = nkBT (6.53)

Therefore:

• density dominated by rest-mass (ρ = u/c2 = mn)

• P � ρc2/3, i.e., much smaller than for relativistic particles.

• Particle pressure only important if particles are relativistic.

Obviously, relativistic particles with m = 0 (or very close to 0) will never get nonrelativistic. Still, they can
“decouple” from the rest of the universe when the interaction rates go to 0.
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6–17

Big Bang Thermodynamics 7

Equation of State

Pressure of ultra-relativistic particles� Pressure of nonrelativistic particles

=⇒ Nonrelativistic particles unimportant for equation of state.

For relativistic particles:

ubosons =
π2

30
g kBT

(
kBT

~c

)3

and ufermions =
7

8
ubosons (6.39)

=⇒ Total energy density for mixture of particles:

u = g∗ ·
π2

30
kBT

(
kBT

~c

)3

(6.54)

where the effective degeneracy factor

g∗ =
∑

bosons

gB

(
TB

T

)4

+
7

8

∑

fermions

gF

(
TF

T

)4

(6.55)

g∗ counts total number of internal degrees of freedom of all relativistic bosonic and fermionic species, i.e., all
relativistic particles which are in thermodynamic equilibrium

The pressure is obtained from Eq. (6.54) via P = u/3.
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6–18

Early Universe 1

Early Expansion, I

Knowing the equation of state, we can now use Friedmann equations to

determine the early evolution of the universe.

Friedmann:

Ṙ2 =
8πG

3
ρR2 − kc2 (4.55)

or, dividing by R2

Ṙ2

R2
= H(t)2 =

8πG

3
ρ− kc2

R2
(4.56)

But: The early universe is dominated by relativistic particles

=⇒ ρ ∝ R−4

=⇒ Density-term dominates

=⇒ we can set k = 0.

Early universe is asymptotically flat!

This will prove to be one of the most crucial problems of modern cosmology. . .
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6–19

Early Universe 2

Early Expansion, II

To obtain the evolution of the early universe, insert the Equation of State (Eq. 6.54) into

Eq. (4.56):

H(t)2 =
8πG

3
g∗
π2

30

(kBT )4

(~c)3
=

4π3G

45(~c)3
g∗ (kBT )4 (6.56)

such that

H(t) =

(
4π3G

45(~c)3

)1/2

g1/2
∗ (kBT )2 (6.57)

On the other hand, since ρ ∝ R−4 (relativistic background),

ρ = ρ0

(
R0

R

)4

(6.58)

Friedmann:

dR

dt
=

√
8πGρ0

3

R2
0

R
(6.59)

Introducing the dimensionless scale factor, a = R/R0 (Eq. 4.29), gives

da

dt
=

√
8πGρ0

3

1

a
=: ξa−1 (6.60)
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6–20

Early Universe 3

Early Expansion, III

And using separation of variables gives
∫ a(t)

0
a da =

∫ t

0
ξ dt =⇒ a(t) = ξ1/2 · t1/2 (6.61)

Therefore, the Hubble constant evolves as

H(t) =
ȧ

a
=

1

2t
(6.62)

Equating Eqs. (6.57) and (6.62) gives the time-temperature relationship:

t =

(
45(~c)3

16π3G

)1/2
1

g
1/2
∗

1

(kBT )2
(6.63)

Inserting all constants and converting to more useful units gives

t =
2.4 sec

g
1/2
∗
·
(
kBT

1 MeV

)−2

(6.64)

. . . one of the most useful equations for the early universe.
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6–21

Early Universe 4

Elementary Particles, I

Behavior of universe depends on g∗ =⇒ Strong dependency on elementary particle physics.

Generally, particles present when energy in other particles allows generation of

particle–antiparticle pairs, i.e., when kBT & mc2 (threshold temperature)

Current particle physics provides the following picture (Olive, 1999, Tab. 1):

Temp. New Particles 4g∗
kBT < mec

2 γ’s and ν ’s 29

mec
2 < kBT < mµc

2 e± 43

mµc
2 < kBT < mπc

2 µ± 57

mπc
2 < kBT < kBTc π’s 69

kBTc < kBT < mstrangec
2 −π’s+u, ū, d, d̄, gluons 205

msc
2 < kBT < mcharmc

2 s, s̄ 247

mcc
2 < kBT < mτc

2 c, c̄ 289

mτc
2 < kBT < mbottomc

2 τ± 303

mbc
2 < kBT < mW,Zc

2 b, b̄ 345

mW,Zc
2 < kBT < mtopc

2 W±, Z 381

mtc
2 < kBT < mHiggsc

2 t, t̄ 423

mHc
2 < kBT H0 427

Tc: energy of
confinement-deconfinement for
transitions quarks =⇒ hadrons,
somewhere between 150 MeV and
400 MeV.

Example: photons (2 polarization
states, i.e., g = 2) and three species
of neutrinos (g = 1, but with
distinguishable anti-particles) =⇒
g∗ = 2 + (7/8) · 2 · 3 = 58/8 = 29/4.
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Early Universe 5

Elementary Particles, II

1.6 2.0 2.4 2.8 3.2 3.6 4.0

g
*

Log(T/MeV)

T  =400 MeV

T  =150 MeV

c

c

0

20

40

60

80

100

(Olive, 1999, Fig. 1)

Will now consider times when only Neutrinos and Electron/Positrons present

(after baryogenesis, see next lecture for that).
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6–23

Early Universe 6

Interlude

Previous (abstract) formulae allow to estimate quantities like

1. The existence and energy of primordial neutrinos,

2. The formation of neutrons,

3. The formation of heavier elements.

Detailed computations require solving nonlinear differential equations

=⇒ difficult, only numerically possible.

Essentially, need to self-consistently solve Boltzmann equation in expanding universe for evolution of phase
space density with time, using the correct QCD/QED reaction rates =⇒ too complicated (at least for me. . . ).

Will use approximate analytical way here, which gives surprisingly exact

answers.
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6–24

Early Universe 7

Neutrinos, I

Neutrino equilibrium caused by weak interactions such as

e−+ e+←→ ν + ν̄ or e−+ ν ←→ e−+ ν etc. (6.65)

Reaction rate for these processes:

Γ = n 〈σv〉 (6.66)

where the thermally averaged interaction cross-section is

〈σv〉 ≈
〈
α2p

m4
W

· p
〉
∼ 10−2(kBT )2

m4
W

(6.67)

mW: mass of W-boson (exchange particle of weak interaction), α ≈ 1/137: fine structure constant.

But in the ultra-relativistic limit, n ∝ T 3 (Eq. 6.38), such that

Γweak ∝
α2T 5

m4
W

(6.68)
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Early Universe 8

Neutrinos, II

Because of Eqs. (6.62) and (6.63), the temperature dependence of the Hubble

constant is

H(T ) = 1.66g1/2
∗ ·

T 2

mP
(6.69)

where mP is the Planck mass, mPc
2 = 1.22× 1019 GeV (see later, Eq. 7.24).

Neutrino equilibrium possible as long as Γweak > H , i.e., (inserting exact

numbers)

kBTdec &

(
500 c6m4

W

mP

)1/3

∼ 1 MeV (6.70)

Neutrinos decouple ∼ 1 s after the big bang.

This follows from Eq. (6.64), remembering that for this phase, g∗ ∼ 10.

Since decoupling, primordial neutrinos just follow expansion of universe, virtually

no interaction with “us” anymore.
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Early Universe 9

Entropy, I

The entropy of particles is defined through

S =
E + PV

T
(6.71)

Important for cosmology: relativistic limit. Define the entropy density,

s =
S

V
=
E/V + P

T
=
u + P

T
≈ 4

3

u

T
(6.72)

(last step for relativistic limit; Eq. 6.40)

Inserting Eq. (6.39) (u ∝ (7/8)T 4; 7/8 for Fermions only) gives

s =
7

8

2π2

45
gkB

(
kBT

~c

)3

=
7

8

2π4

45 ζ(3)
kB n (6.73)

Since s ∝ n for backgrounds, η = nCMBR/nbaryons is often called “entropy

per baryon”.
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Early Universe 10

Entropy, II

For a mixture of backgrounds, Eq. (6.73) gives

s

kB
= g∗,S ·

2π2

45

(
kBT

~c

)3

(6.74)

where g∗,S is the analogue to g∗ (Eq. 6.55),

g∗,S =
∑

bosons

gB

(
TB

T

)3

+
7

8

∑

fermions

gF

(
TF

T

)3

(6.75)

Note that if the species are not at the same temperature, g∗ 6= g∗,S .

Entropy per mass today:
S

M
=

1016

Ωh2
erg K−1 g−1 (6.76)

while the entropy gain of heating water at 300 K by 1 K is ∼ 1.4× 105 erg K−1 g−1.

=⇒ “Human attempts to obey 2nd law . . . are swamped by . . . microwave background” (Peacock,

1999, p. 277).

=⇒S = const. for universe to very good approximation.

=⇒Universe expansion is adiabatic!



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

6–28

Early Universe 11

Reheating

After decoupling of neutrinos, neutrino distribution just gets redshifted (similar to CMBR,

Eq. 6.19):
Tν
Tdec

=
Rdec

R(t)
=⇒ Tν ∝ R−1 (6.77)

On the other hand, the temperature of the universe is

T ∝ g
1/3
∗,S R

−1 (6.78)

This follows from S/V ∝ T 3 (Eq. 6.74), V ∝ R3, and S = const. (adiabatic expansion of the universe).

=⇒ as long as g∗,S = const. we have Tν = T

=⇒ Immediately after decoupling, neutrino background appears as if it is still in equilibrium.

However: Temperature for neutrino decoupling ∼ 2mec
2. But, for kTBB < 2mec

2, pair creation,

γ + γ ←→ e− + e+ (6.79)

is kinematically impossible.

=⇒ Shortly after neutrino decoupling: e± annihilation

=⇒ g∗,S changes!

=⇒We expect that TCMBR 6= Tν.
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Early Universe 12

Reheating

Difference in g∗,S :

• before annihilation: e−, e+, γ =⇒ g∗,S = 2 + 2 · 2 · (7/8)= 11/2.

• after annihilation: γ =⇒ g∗,S = 2

But: the total entropy for particles in equilibrium conserved (“expansion is adiabatic”):

g∗,S(Tbefore) · T 3
before = g∗,S(Tafter) · T 3

after (6.80)

such that

Tafter =

(
11

4

)1/3

Tbefore ∼ 1.4 · Tbefore (6.81)

Since Tafter > Tbefore: “reheating”.

Note that in reality the annihilation is not instantaneous and T decreases (albeit less rapidly) during
“reheating”. . .

=⇒Since neutrino-background does not “see” annihilation

=⇒ just continues to cool

=⇒ current temperature of neutrinos is

Tν =

(
4

11

)1/3

TCMBR ∼ 1.95 K (6.82)
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Big Bang Nucleosynthesis: Theory 1

History

After reheating: universe consists of p, n, γ (and e− to preserve charge neutrality)

=⇒ Ingredients for Big Bang Nucleosynthesis (BBN).

Historical perspective: Cross section to make Deuterium:

〈σv〉(p + n→ D + γ) ∼ 5× 10−20 cm3 s−1 (6.83)

Furthermore, we need temperatures of TBBN ∼ 100 keV, i.e., tBBN ∼ 200 s (Eq. 6.64).

By Eq. (6.20) this implies a particle density of

n ∼ 1

〈σv〉 · tBBN
∼ 1017 cm−3 (6.84)

Today: Baryon density nB ∼ 10−7 cm−3. Since n ∝ R−3,

T (today) =

(
nB

n

)1/3

· TBBN ∼ 10 K (6.85)

pretty close to the truth. . .

The above discussion was first asserted by George Gamov and coworkers in 1948, and was the first
prediction of the cosmic microwave background radiation!

Observations: BBN is required by observations, since no other production region for Deuterium

known, and since He-abundance ∼ 25% by mass everywhere.
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Big Bang Nucleosynthesis: Theory 2

Proton/Neutron, I

Initial conditions for BBN: Set by Proton-Neutron-Ratio.

For t� 1 s, equilibrium via weak interactions:

n ←→ p + e−+ ν̄e

νe + n ←→ p + e−

e+ + n ←→ p + ν̄e

(6.86)

Reactions fast as long as particles relativistic.

But once T ∼ 1 MeV: n, p become non-relativistic

=⇒ Boltzmann statistics applies (or use Eq. 6.51):
nn

np
= e−∆mc2/kBT = e−1.3 MeV/kBT (6.87)

=⇒Suppression of n with respect to p because of larger mass

(mnc
2 = 939.57 MeV, mpc

2 = 938.27 MeV)
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Big Bang Nucleosynthesis: Theory 3

Proton/Neutron, II

As usual, the n, p abundance freezes out when Γ� H .

For the neutron, proton equilibrium, the reaction rate is

Γ(νe + n↔ p + e−) ∼ 2.1

(
T

1 MeV

)5

s−1 (6.88)

The neutron abundance freezes out at kBT ∼ 0.8 MeV (t = 1.7 s), such

that nn/np = 0.2

After that: Neutron decay (τn = 886.7± 1.2 s).

=⇒Nucleosynthesis has to be over before neutrons are decayed away!

=⇒Nucleosynthesis only takes a few minutes at most!



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

6–33

Big Bang Nucleosynthesis: Theory 4

Deuterium

The first step in nucleosynthesis is the formation of deuterium (binding energy

EB = 2.225 MeV, i.e., 1.7(mn−mp)c
2):

p + n ←→ D + γ (6.89)

Note: Both fusion and photodisintegration are possible:

Γfusion = nB〈σv〉 (6.90)

Γphoto = nγ〈σv〉e−EB/kBT (6.91)

At first: photodisintegration dominates since η−1 = nγ/nB ∼ 1010 (see Eq. 6.73).

Build up of D is only possible once Γfusion > Γphoto, i.e., when
nγ
nB

e−EB/kBT ∼ 1 (6.92)

Inserting numbers shows that

Deuterium production starts at kBT ∼ 100 keV, or t ∼ 100 s.
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Big Bang Nucleosynthesis: Theory 5

Heavier Elements, I

Once deuterium present:

nucleosynthesis of lighter elements:

D + D −→ T + p

D + n −→ T + γ

D + p −→ 3He + γ

D + D −→ 3He + n
3He + n −→ T + p

(6.93)

production of 4He:

D + D −→ 4He + γ

D + 3He −→ 4He + p

T + D −→ 4He + n
3He + 3He −→ 4He + 2p

T + p −→ 4He + γ
3He + n −→ 4He + γ

(6.94)
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Big Bang Nucleosynthesis: Theory 6

Heavier Elements, II

Element gap at A = 5 can be overcome to produce Lithium:

3He + 4He −→ 7Be + γ
7Be −→ 7Li + e+ + νe

T + 4He −→ 7Li + e+ + νe

(6.95)

Gap at A = 8 prohibits production of heavier isotopes.

=⇒ Major product of BBN: 4He.

Mass fraction of 4He can be estimated assuming all neutrons incorporated into 4He

=⇒ number density of H=number of remaining protons, i.e., mass fraction

X =
np − nn

np + nn
(6.96)

and

Y = 1− np − nn

np + nn
= 2

(
1 +

np

nn

)−1

(6.97)

Because of neutron decay, at kBT = 0.8 MeV: nn/np = 1/7, such that

BBN predicts primordial He-abundance of Y = 0.25.
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Big Bang Nucleosynthesis: Theory 7

Remarkable Things

Note the following coincidences:

1. Freeze out of nucleons simultaneous to freeze out of neutrinos.

2. . . . and parallel to electron-positron annihilation.

3. Expansion is slow enough that neutrons can be bound to nuclei.

=⇒Long chain of coincidences makes our current universe possible!
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Big Bang Nucleosynthesis: Theory 8

Detailed Calculations, I

1. Generally, BBN operates as a function of the entropy per baryon, η.

Remember that the entropy density for a baryon is

s =
7

8

2π2

45
gkB

(
kBT

~c

)3

=
7

8

2π4

45 ζ(3)
kB n (6.73)

and therefore the entropy per baryon is

η =
nCMBR

nbaryons
(6.98)

Note that η is related to Ω in baryons, ΩB:

ΩB = 3.67× 107 · η (6.99)

(since η, Ω determine expansion behavior)

=⇒ Perform computations as function of η!

2. Since Y is set by np/nn

=⇒ He abundance is relatively independent from η



(Olive, 1999, Fig. 3)

Detailed calculations: Solution of
rate-equations in expanding universe, see,
e.g., Wagoner, Fowler & Hoyle (1967), Thomas
et al. (1993), Olive (1999), Tytler et al. (2000),
and (Kneller & Steigman, 2004).
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Big Bang Nucleosynthesis: Theory 10

Detailed Calculations, III

10
−110 010 110 2

Temperature (10
9
 K)
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p
7Li,7Be
D
4He
3H,3He
6Li

1/60 1 5 15 60Minutes:
10

Build-up of abundances as
function of time for
η = 5.1× 10−10 (Burles, Nollett
& Turner, 1999, Fig. 3),
remember: η = nCMBR/nbaryons



He abundance as function of η
(Thomas et al., 1993, Fig. 3a)



Light-element abundances as function
of η (Olive, 1999, Fig. 4)



Intermediate mass abundances as
function of η (Olive, 1999, Fig. 5)



BBN observations strongly

constrain ΩBaryons.

(Burles, Nollett & Turner, 1999, Fig. 1)
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Big Bang Nucleosynthesis: Theory 15

Confrontation with WMAP

As we will see later: fluctuations in cosmic microwave background allow for a

tight determination of cosmological parameters.

Best results so far from Wilkinson Microwave Anisotropy Probe (WMAP; see

Spergel et al. 2007):

Ωbh
2 = 0.02233+0.00072

−0.00091
(6.100)

With the most modern BBN calculations (Kneller & Steigman, 2004), this gives

(Molaro, 2007):

Element SBBN+WMAP

Yp 0.2482+0.0004
−0.0003

3He/H (10.5± 0.6)× 10−6

D/H (25.7+1.7
−1.3)× 10−6

Li/H (4.41+0.3
−0.4)× 10−10

=⇒Can use WMAP parameters and BBN theory to compare BBN theory with

measurements
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Nucleosynthesis: Observations 1

4He

0 100 200
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6
 times O/H Ratio
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n

Izotov & Thuan fit
Izotov & Thuan data
Other data

(Burles, Nollett & Turner, 1999, Fig. 4)

4He produced in stars

=⇒extrapolate to zero metallicity in

systems of low metallicity (i.e.,

minimize stellar processing).

Best determination from

He II−→He I recombination lines in

H II regions (metallicity ∼ 20%

solar).

Result: Linear correlation He vs. O

=⇒extrapolate to zero oxygen to

obtain primordial abundances.

Result: Y = 0.234± 0.005 (Olive,

1999).
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Nucleosynthesis: Observations 2

WMAP BBN and He

(M
ol

ar
o,

20
07

,F
ig

.1
)

After improving He recombination physics and intrinsic absorption, He

abundances are now in agreement with BBN prediction using ΩB from WMAP.
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Nucleosynthesis: Observations 3

Deuterium, I

Stars destroy D in fusion processes

=⇒use as non-processed material as possible!

Lyα forest: absorption of quasar light by

intervening material

=⇒Some absorption lines in the Lyα forest

show asymmetric line structure caused by

primordial deuterium.

Remember the Balmer formula:

1

λn,m
= RH

(
1

m
− 1

n

)
(6.101)

with with Rydberg constant

RH =
memp

me +mp

e4

8πε2
0h

3
(6.102)

(QSO 1937−1009; top: 3 m Lick, bottom: Keck;
Burles, Nollett & Turner, 1999, Fig. 2)
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Nucleosynthesis: Observations 4

Deuterium, II

(Kirkman et al., 2003, Fig. 1): Lyman forest against three QSOs
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Nucleosynthesis: Observations 5

Deuterium, III

(Kirkman et al., 2003, Fig. 2): use absorption close to 4285 Å to measure D/H
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Nucleosynthesis: Observations 6

Deuterium, IV

4220 4240 4260 4280 4300 4320
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Wavelength (Å)

F λ
 ×

 1
0-1

6  (
er

gs
 s

ec
-1

 c
m

-2
 Å

 -
1 )

 

To measure abundances, measure column from

the optical depth:

τ (λ) = nσ(λ)` = Nσ(λ) (6.103)

where σ: absorption cross section of line, N :

column density. This can be measured from

Iobs(λ) = Icont(λ)e−τ(λ) (6.104)

=⇒ Need to know the continuum, Icont

Very difficult to do in Lyα forest (see Figure)

Currently best result for D/H (Kirkman et al.,

2003):

D/H = 2.78+0.44
−0.38 × 10−5

Corresponding to η = 5.9± 0.5× 10−10 or
ΩBh

2 = 0.0214 (±9.3%).



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

6–51

Nucleosynthesis: Observations 7

WMAP BBN and D

(M
ol

ar
o,

20
07

,F
ig

.2
)

Measured deuterium abundances agree with WMAP predictions

Although there are issues with Milky Way deuterium abundances. . .



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

6–52

Nucleosynthesis: Observations 8

Lithium, I

Lithium lines (Li doublet at 6707 Å) are visible in

some stars

=⇒ allow measurement of Li abundance

Li line as a function of [Fe/H]
(Bonifacio et al., 2007, Fig. 1)
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Nucleosynthesis: Observations 9

Lithium, II

4500 5000 5500 6000 6500
Stellar Surface Temperature (K)
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iu
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/H
yd
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ge
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R

at
io

Spite & Spite (1982): Old

halo stars with very low

[Fe/H]) show primordial

Lithium abundance,
7Li/H = 1.6× 10−10

“Spite plateau”

Lower temperature stars:

outer convection zone

=⇒ Li burning destroys Li.

Cannot use galactic objects
since spallation of heavier
nuclei by cosmic rays
produces Li (up to 10×
primordial!).

(Burles, Nollett & Turner,

1999, Fig. 5)
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Nucleosynthesis: Observations 10

WMAP BBN and Li

(M
ol

ar
o,

20
07

,F
ig

.3
)

Lithium has a big problem!

Temperature sensitivity might have been underestimated, also rotational mixing, diffusion, and differences
between 1D- and 3D-radiative transfer in stellar atmosphere models might play a role. However, no
convincing solution has been proposed as of today.
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Nucleosynthesis: Observations 11

Outlook: Population III

(HE0107−5240, metallicity 1/200000 solar; after Christlieb et al., 2002, Fig. 1)

Earliest stars should only have H, He, i.e., Z = 0 =⇒ detection of such stars

would enable the direct measure of primordial abundances.

“population III star”, formed either from primordial gas cloud (and got some elements later through accretion
from ISM), or from debris from type II SN explosion.
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Nucleosynthesis: Observations 12

Outlook: Population III

(Frebel et al., 2005, Fig. 2)

Lowest metallicity known:

HE1327−2326, with Fe-abundance

of 1/250000 solar

(Frebel et al., 2005, Fig. 1)
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6–57

Summary: Classical Big Bang 1

Summary

Summary: History of the universe after its first 0.01 s (afterIslam, 1992, Ch. 7,

see also Weinberg, The first three minutes).

t = 0.01 s T = 1011 K ρ ∼ 4× 1011 g cm−3

Main constitutents: γ, ν, ν̄, e−-e+ pairs.

No nuclei (instable). n and p in thermal balance.

t = 0.1 s T = 3× 1010 K ρ ∼ 3× 107 g cm−3

Main constitutents: γ, ν, ν̄, e−-e+ pairs. No nuclei.

n + ν ↔ p + e−: mass difference becomes important, 40% n, 60% p (by mass).
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6–58

Summary: Classical Big Bang 2

Summary

t = 1.1 s T = 1010 K ρ ∼ 105 g cm−3

Neutrinos decouple, e−-e+ pairs start to annihilate. No nuclei.

25% n, 75% p

t = 13 s T = 3× 109 K ρ ∼ 105 g cm−3

Reheating of photons, pairs annihilate, ν fully decoupled, deuterium still cannot

form.

17% n, 83% p

t = 3 min T = 109 K ρ ∼ 105 g cm−3

Pairs are gone, neutron decay becomes important, start of nucleosynthesis

14% n, 86% p



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E
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Summary: Classical Big Bang 3

Summary

t = 35 min T = 3× 108 K ρ ∼ 0.1 g cm−3

game over

Next important event: t ∼ 300000 years: Interaction CMB/matter stops (“last

scattering”, recombination).

Before we look at this, we look at

the first 0.01 s: the very early universe
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7–2

Inflation: Problems 1

Inflation

So far, have seen that BB works remarkably well in explaining the observed universe.

There are, however, many problems with the classical BB theories:

Horizon problem: CMB looks too isotropic =⇒Why?

Flatness problem: Density close to BB was very close to Ω = 1 (deviation ∼ 10−16 during

nucleosynthesis) =⇒Why?

Hidden relics problem: There are no observed magnetic monopoles, although predicted by

GUT, neither gravitinos and other exotic particles =⇒Why?

Vacuum energy problem: Energy density of vacuum is 10120 times smaller than predicted

=⇒Why?

Expansion problem: The universe expands =⇒Why?

Baryogenesis: There is virtually no antimatter in the universe =⇒Why?

Structure formation: Standard BB theory produces no explanation for lumpiness of universe.

Inflation attempts to answer all of these questions.



(WMAP; Page et al., 2007)



courtesy E. Wright.
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7–5

Inflation: Problems 4

Horizon problem, III

COBE and WMAP: There are temperature fluctuations in CMB on 10◦ scales:

∆TCMB

TCMB
∼ 2× 10−5 (7.1)

Size of observable universe at given epoch (“particle horizon”) is given by

coordinate distance traveled by photons since the big bang (Eq. 4.43):

dh = R0 · rH(t) =

∫ t

0

c dt

a(t)
(7.2)

For a matter dominated universe with Ω = 1,

a(t) =

(
3H0

2
t

)2/3

(4.72)

such that for t = t0 = 2/(3H0) (Eq. 4.73):

dh(t0) =
3c

(3H0/2)2/3
t

1/3
0 =

2c

H0
(7.3)
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7–6

Inflation: Problems 5

Horizon problem, IV

For matter dominated universes at redshift z, Eq. (7.3) works out to

dh ≈
6000 Mpc

h
√

Ωz
(7.4)

(Peacock, 1999, eq. 11.2)

Since CMB decoupled at z ∼ 1000, at that time dh ∼ 200 Mpc, while today

dh ∼ 6000 Mpc

=⇒ current observable volume ∼ 30000× larger!

Note: we use a =⇒ all scales refer to what they are now, not what they were when the photons started!

Horizon problem: Why were causally disconnected areas on the sky so

similar when CMB last interacted with matter?

Note that the horizon distance is larger than Hubble length:

dh =
2c

H0
>

2c

3H0
= c · t0 = dH (7.5)

Reason for this is that universe expanded while photons traveled towards us
=⇒ Current observable volume larger than volume expected in a non-expanding universe.
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7–7

Inflation: Problems 6

Flatness problem, I

Current observations of density of universe roughly imply

0.01 . Ω . 2 i.e., Ω ∼ 1 (7.6)

(will be better constrained later)

Ω ∼ 1 imposes very strict conditions on initial conditions of universe:

The Friedmann equation (e.g., Eq. 4.57) can be written in terms of Ω:

Ω− 1 =
k

a2H2
=
ck

ȧ2
(7.7)

For a nearly flat, matter dominated universe, a(t) ∝ t2/3, such that

Ω(t)− 1

Ω(t0)− 1
=

(
t

t0

)2/3

(7.8)

while for the radiation dominated universe with a(t) ∝ t,

Ω(t)− 1

Ω(t0)− 1
=
t

t0
(7.9)



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

7–8

Inflation: Problems 7

Flatness problem, II

Today: t0 = 3.1× 1017 h−1 s, i.e., observed flatness predicts for era of

nucleosynthesis (t = 1 s):

Ω(1 s)− 1

Ω(t0)− 1
∼ 10−12 . . . 10−16 (7.10)

i.e., very close to unity.

Flatness problem: It is very unlikely that Ω was so close to unity at the

beginning without a physical reason.

Had Ω been different from 1, the universe would immediately have been collapsed or expanded too fast =⇒
Anthropocentric point of view requires Ω = 1.
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7–9

Inflation: Problems 8

Hidden relics problem

Modern theories of particle physics predict the following particles to exist:

Gravitinos: From supergravity, spin 3/2 particle with mc2 ∼ 100 GeV, if it

exists, then nucleosynthesis would not work if BB started at kT > 109 GeV.

Moduli: Spin-0 particles from superstring theory, contents of vacuum at high

energies.

Magnetic Monopoles: Predicted in grand unifying theories, but not observed.

Hidden relics problem: If there was a normal big bang, then strange

particles should exist, which are not observed today.
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7–10

Inflation: Problems 9

Vacuum, Λ, I

What is vacuum? Not empty space but rather ground state of some physical theory

(Reviews: Carroll, Press & Turner 1992, Carroll 2001)

Since ground state should be same in all coordinate systems =⇒ Vacuum is Lorentz invariant.

vac
P

V

(after Peacock, 1999, Fig. 1.3)

Equation of state (Zeldovich, 1967):

Pvac = −ρvacc
2 (7.11)

This follows directly from 1st law of thermodynamics: ρvac should be constant if compressed or

expanded, which is true only for this type of equation of state:

dE = dU + P dV = ρvacc
2 dV − ρvacc

2 dV = 0 (7.12)
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7–11

Inflation: Problems 10

Vacuum, Λ, II

ρvac defines Einstein’s cosmological constant

Λ = −8πGρvac

c4
(7.13)

Adding ρvac to the Friedmann equations allows to define

ΩΛ =
ρvac

ρcrit
=

ρvac

3H2/8πG
=
c4Λ

3H2
(7.14)

Classical physics: Particles have energy

E = T + V (7.15)

and force is F = −∇V , i.e., can add constant without changing equation of

motion

=⇒ In classical physics, we are able to define ρvac = 0!

Quantum mechanics is (as usual) more difficult.
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7–12

Inflation: Problems 11

Vacuum, Λ, III

Vacuum in quantum mechanics:

-4 -2 0 2 4
x (mω/(h/2π))1/2

E/(mω(h/2π)), Ψ

1

2

3

n=0

n=1

n=2

Simplest case: harmonic oscillator:

V (x) =
1

2
mω2x2 i.e., V (0) = 0

(7.16)

However, particles can only have

energies

En =
1

2
~ω + n~ω where n ∈ �

(7.17)

=⇒ Vacuum state has zero point

energy

E0 =
1

2
~ω (7.18)

Simple consequence of uncertainty principle!

In QM, we could normalize V (x) such that E0 = 0, important here is that vacuum state energy differs from
classical expectation!
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7–13

Inflation: Problems 12

Vacuum, Λ, IV

Quantum field theory: Field as collection of harmonic oscillators of all frequencies. Simplest case:

spinless boson (“scalar field”, φ).

=⇒ Vacuum energy is the sum of all contributing ground state modes:

E0 =
∑

j

1

2
~ωj (7.19)

Calculate sum by putting system in box with volume L3, and then L −→∞.

Box =⇒ periodic boundary conditions:

λi = L/ni ⇐⇒ ki = 2π/λi = 2πni/L (7.20)

for ni ∈

�

=⇒ there are dkiL/2π discrete wavenumbers in [ki, ki + dki], such that

E0 =
1

2
~L3

∫
ωk

(2π)3
d3

k where ω2
k = k2 +m2/~2 (7.21)

Imposing cutoff kmax:

ρvacc
2 = lim

L→∞
E0

L3
= ~

k4
max

16π3
(7.22)

Divergent for kmax −→∞ (“ultraviolet divergence”).
Not worrisome as we expect simple QM to break down at large energies anyway (ignored collective effects,
etc.).
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7–14

Inflation: Problems 13

Vacuum, Λ, V

When does classical quantum mechanics break down?

Estimate: Formation of “Quantum black holes”:

λde Broglie =
2π~

mc
<

2Gm

c2
= rSchwarzschild (7.23)

=⇒ Defines Planck mass:

mP =

√
~c

G
=̂ 1.22× 1019 GeV (7.24)

Corresponding length scale: Planck length:

lP =
~

mP
=

√
~G

c3
∼ 10−37 cm (7.25)

. . . and time scale (Planck time):

tP =
lP
c

=

√
~G

c5
∼ 10−47 s (7.26)

=⇒Limits of current physics until successful theory of quantum gravity.

The system of units based on lP, mP, tP is called the system of Planck units.
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7–15

Inflation: Problems 14

Vacuum, Λ, VI

To calculate the QFT vacuum energy density, choose

kmax = mPc
2/~ (7.27)

Inserting into Eq. (7.22) gives

ρvacc
2 = 1074 GeV ~

−3 or ρvac ∼ 1092 g cm−3 (7.28)

a tad bit on the high side (∼ 10120 higher than observed).

Inserting ρvac in Friedmann equation: T < 3 K at t = 10−41 s after Big Bang.

To obtain current universe we require kmax = 10−2 eV =⇒ Less than binding energy of Hydrogen,

where QM definitively works!

Vacuum energy problem: Contributions from virtual fluctuations of all particles must

cancel to very high precision to produce observable universe.

Casimir effect: force between conducting plates of area A and distance a in vacuum is
FCasimir = ~cAπ2/(240a4) =⇒ caused by incomplete cancellation of quantum fluctuations. Confirmed by
Lamoreaux in 1996 at 5% level.
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7–16

Inflation: Problems 15

Expansion problem

Cosmological Expansion:

GR predicts expansion of the universe, but initial conditions for expansion are not

set!

Classical cosmology: “The unverse expands since it has expanded in the past”

=⇒ Hardly satisfying. . .

Cosmological Expansion Problem: What is the physical mechanism

responsible for the expansion of the universe?

To put it more bluntly:

“The Big Bang model explains nothing about the origin of the universe as we now perceive it,

because all the most important features are ‘predestined’ by virtue of being built into the assumed

initial conditions near to t = 0.” (Peacock, 1999, p. 324)
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7–17

Inflation: Problems 16

Baryogenesis

Quantitatively: Today:

Np

Nγ
∼ 10−9 but

Np̄

Nγ
∼ 0 (7.29)

Assuming isotropy and homogeneity, this is puzzling: Violation of Copernican

principle!

Antimatter problem: There are more particles than antiparticles in the

observable universe.

Sakharov (1968): Asymmetry implies three fundamental properties for theories of particle physics:

1. CP violation (particles and antiparticles must behave differently in reactions, observed, e.g., in

the K0 meson),

2. Baryon number violating processes (more baryons than antibaryons =⇒ Prediction by GUT),

3. Deviation from thermal equilibrium in early universe (CPT theorem: mX = mX̄ =⇒ same

number of particles and antiparticles in thermal equilibrium).
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7–18

Inflation: Problems 17

Structure formation

Final problem: structure formation

In the classical BB picture, the initial conditions for structure formation

observed are not explained. Furthermore, assuming the observed

Ωbaryons, the observed structures (=us) cannot be explained.

The theory of inflation attempts to explain all of the problems mentioned by

invoking phase of exponential expansion in the very early universe (t . 10−16 s).
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7–19

Inflation: Theory 1

Basic Idea, I

Use the Friedmann equation with a cosmological constant:

H2(t) =

(
ȧ

a

)2

=
8πGρ

3
− k

a2
+

Λ

3
(7.30)

Basic assumption of inflationary cosmology:

During the big bang there was a phase where Λ dominated the

Friedmann equation.

H(t) =
ȧ

a
=

√
Λ

3
= const. (7.31)

since Λ = const. (probably. . . ). Solution of Eq. (7.31):

a ∝ eHt (7.32)

and inserting into Eq. (7.7) shows that

Ω− 1 =
k

a2H2
∝ e−2Ht (7.33)
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7–20

Inflation: Theory 2

Basic Idea, II

When did inflation happen?

Typical assumption: Inflation = phase transition of a scalar field (“inflaton”)

associated with Grand Unifying Theories.

Therefore the assumptions:

• temperature kTGUT = 1015 GeV, when 1/H ∼ 10−34 sec (tstart ∼ 10−34 s).

• inflation lasted for 100 Hubble times, i.e., for ∆T = 10−32 s.

With Eq. (7.32): Inflation: Expansion by factor e100 ∼ 1043.

. . . corresponding to a volume expansion by factor ∼ 10130

=⇒ solves hidden relics problem!

Furthermore, Eq. (7.33) shows

Ω− 1 = 10−86 (7.34)

=⇒ solves flatness problem!
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Inflation: Theory 3

Basic Idea, III

Temperature behavior: During inflation universe supercools:

Remember: entropy density

s =
ρc2 + P

T
(6.72)

But for Λ:

p = −ρc2 (7.11)

so that the entropy density of vacuum

svac = 0 (7.35)

Trivial result since vacuum is just one quantum state =⇒ very low entropy.

Inflation produces no entropy =⇒ S existing before inflation gets diluted, since entropy density

s ∝ a−3.

But for relativistic particles s ∝ T 3 (Eq. 6.74), such that

aT = const. =⇒ Tafter = 10−43Tbefore (7.36)

When inflation stops: vacuum energy of inflaton field transferred to normal matter

=⇒ “Reheating” to temperature

Treheating ∼ 1015 GeV (7.37)
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7–22

Inflation: Theory 4

Summary

T(t) a(t)
a(t)

T(t)

inflation reheatingtime time

(after Bergström & Goobar, 1999, Fig. 9.1, and Kolb & Turner, Fig. 8.2)
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7–23

Inflation: Theory 5

Scalar Fields, I

For inflation to work: need short-term cosmological constant, i.e., need particles

with negative pressure.

Basic idea (Guth, 1981): phase transition where suddenly a large Λ happens.

How? =⇒ Quantum Field Theory!

Describe hypothetical particle with a time-dependent quantum field, φ(t), and potential, V (φ).

Simplest example from QFT (~ = c = 1):

V (φ) =
1

2
m2φ2 (7.38)

where m: “mass of field”. Particle described by φ: “inflaton”.

For all scalar fields, particle physics shows:

ρφ =
1

2
φ̇2 + V (φ) (7.39)

Pφ =
1

2
φ̇2 − V (φ) (7.40)

i.e., obeys vacuum equation of state!

“Vacuum”: particle “sits” at minimum of V .
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7–24

Inflation: Theory 6

Scalar Fields, II

Typically: potential looks more

complicated.

Due to symmetry, after harmonic

oscillator, 2nd simplest potential:

Mexican hat potential (“Higgs

potential”),

V (φ) = −µ2φ2 + λφ4 (7.41)

=⇒Minimum of V still determines

vacuum value.
For T 6= 0, we need to take interaction with thermal bath into account

=⇒ Temperature dependent potential!

Veff(φ) = −(µ2 − aT 2)φ2 + λφ4 (7.42)

where a some constant.
(minimization of Helmholtz free energy, see Peacock, 1999, , p. 329ff., for details)
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Inflation: Theory 7

Scalar Fields, III

0.0 0.2 0.4 0.6 0.8 1.0
φ (arbitrary units)

-0.1

0.0

0.1

0.2

0.3

V
(φ

) 
(a

rb
itr

ar
y 

un
its

)

The minimum of V is at

φ =





0 for T > Tc√
µ2−aT 2

2λ for T < Tc

(7.43)

where the critical temperature

Tc = µ/
√
a (7.44)

and

Vmin =





0 for T > Tc

−(µ2−aT 2)2

4λ for T < Tc

(7.45)

Since switch happens suddenly: phase transition
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7–26

Inflation: Theory 8

Scalar Fields, IV

Minimum Vmin for T > Tc smaller than “vacuum minimum”

=⇒ Behaves like a cosmological constant!

Since Tc ∝ µ,

Inflation sets in at mass scale of whatever scalar field produces inflation.

Grand Unifying Theories: m ∼ 1015 GeV.

The problem is, what V (φ) to use. . .
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Inflation: Theory 9

First-Order Inflation

0.0 0.2 0.4 0.6 0.8 1.0
φ (arbitrary units)

-0.05

0.00

0.05

0.10

V
(φ

) 
(a

rb
itr

ar
y 

un
its

)

(after Peacock, 1999, Fig. 11.2)

Original idea (Guth, 1981):

V (φ, T ) = λ|φ|4 − b|φ|3 + aT 2|φ|2 (7.46)

has two minima for T greater than a critical

temperature:

Vmin(φ = 0): false vacuum

Vmin(φ > 0): true vacuum iff < 0.

Particle can tunnel between both vacua: first

order phase transition =⇒ first order inflation.

Problem: vacuum tunnels between false and true vacua =⇒ formation of bubbles.

Outside of bubbles: inflation goes infinitely (“graceful exit problem”).

First order inflation is not feasible.
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7–28

Inflation: Theory 10

Summary

First order inflation does not work

=⇒ Potentials derived from GUTs do not work.

=⇒ However, many empirical potentials do not suffer from these problems.

=⇒ inflation is still theory of choice for early universe.

Catchphrases (Liddle & Lyth, 2000, Ch. 8):

• chaotic inflation,
• supersymmetry/-gravitation =⇒ tree-level potentials,
• renormalizable global susy,
• power-law inflation,
• hybrid inflation (combination of two scalar fields) =⇒ spontaneous or dynamical susy breaking,
• scalar-tensor gravity

and many more. . .
All are somewhat ad hoc, and have more or less foundations in modern theories of QM and gravitation.

Information on what model is correct comes from

1. predicted seed to structure formation, and

2. values of Ω and Λ.

=⇒Determine Ω and Λ!
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8–2

Motivation 1

Inflation

Previous lectures: Inflation requires

Ω =
ρ

ρcrit
= Ωm + ΩΛ = 1 (8.1)

Here,

Ωm: Ω due to gravitating stuff,

ΩΛ: Ω due to vacuum energy or other exotic stuff.

To decide whether that is true:

• need inventory of gravitating material in the universe,

• need to search for evidence of non-zero Λ

Also search for evidence in structure formation =⇒ Later. . .
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8–3

Motivation 2

Inflation

Remember that

Ωm =
ρm

ρcrit
=

8πGρ

3H2
(4.58)

and

ΩΛ =
ρvac

ρcrit
=

ρvac

3H2/8πG
=
c4Λ

3H2
(7.14)

As for a typical ensemble of stars,

M

L
≈ const. (8.2)

we often express Ω in terms of a mass to luminosity ratio:

Using canonical luminosity density of universe, one can show (Peacock, 1999,

p. 368, for the B-band):
M

L

∣∣∣∣
crit

= 1390h
M�
L�

(8.3)

. . . which means that there must be lots of dark matter.
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8–4

Determination of Ωm 1

Introduction

Constituents of Ωm:

• Radiation (CMBR)

• Neutrinos

• Baryons (“normal matter”, Ωb)

• Other, non-radiating, gravitating material (“dark matter”)

Radiation: From temperature of CMBR, using u = ρc2 = aradT
4:

Ωγh
2 = 2.480× 10−5 (8.4)

for h = 0.72, Ωγ = 4.8× 10−5

Massless Neutrinos have

Ων = 3 · 7
8

( 4

11

)4/3

Ωγ = 0.68 Ωγ (8.5)

Photons and massless neutrinos are unimportant for todays Ω.
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Determination of Ωm 2

Massive Neutrinos

Sudbury Neutrino Observator (SNO) and Super-Kamiokande: Neutrinos are not

massless.

From neutrino decoupling and expansion:

Current neutrino density: 113 neutrinos cm−3 per neutrino family.

In terms of Ω:

Ωνh
2 =

∑
mi

93.5 eV
(8.6)

=⇒For h = 0.72, m ∼ 16 eV would be sufficient to close universe

Current mass limits: mνe < 2.2 eV, mνµ < 170 keV, and mντ < 15.5 MeV

Source:

�� � �� � � � � � � � � � 	 � � � � � � � � � � � � � � ��� � �
 
 � � � � 	

Note that solar neutrino oscillations imply ∆m between νe and νµ is ∼ 10−4 eV, i.e., most probable mass for
νµ is much smaller than the direct experimental limit.

Structure formation shows that
∑
mν < 0.7 eV (Spergel et al., 2007).

http://cupp.oulu.fi/neutrino/nd-mass.html
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Determination of Ωm 3

Baryons

Best evidence for mass in baryons, Ωb:

primordial nucleosynthesis.

Ωbh
2 = 0.02± 0.002 (8.7)

(Burles, Nollett & Turner, 1999, Fig. 1)



NGC 6007 (Jansen;

� � � �� � �� � � � �
 � � � � � �� � � 	 � � � � � 
 �

)

http://www.astro.rug.nl/~nfgs/
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NGC 1553 (S0) after Kormendy (1984, ApJ 286, 116)



NGC 891 (Swaters et al., 1997, ApJ 491, 140 / Paul LeFevre, S&T Nov. 2002)
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Determination of Ωm 7

Galaxy Rotation Curves, IV

Stellar motion due to mass within r:

GM(≤ r)

r2
=
v2

rot(r)

r

=⇒M(≤ r) =
v2

rotr

G

therefore:

v ∼ const. =⇒M(≤ r) ∝ r.

NGC 891, KPNO 1.3 m
Barentine & Esquerdo
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Determination of Ωm 8

Galaxy Rotation Curves, V

For disk in spiral galaxies, I(r) = I0 exp(−r/h) such that

L(r < r0) = I0

∫ r0

0

2πr exp(−r/h) dr ∝ h2 − h(r + h) exp(−r/h) (8.8)

such that for r −→∞:

L(r < r0)→ const. (8.9)

If M/L ∼ const. =⇒ contradiction with observations! (we would expect

v ∝ r−1/2)

Result for galaxies compared to stars

M

L

∣∣∣∣
galaxies

= 10 . . . 20
M�
L�

vs.
M

L

∣∣∣∣
stars

= 1 . . . 3
M�
L�

Only about 10% of the gravitating matter in universe radiates.



Coma Cluster (O. Lopez-Cruz, I. K. Shelton, & KPNO)
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Determination of Ωm 10

Galaxy Clusters, II

For mass of galaxy clusters, make use of the virial theorem:

Ekin = −Epot/2 (8.10)

in statistical equilibrium.

Measurement: assume isotropy, such that
〈
v2
〉

=
〈
v2
x

〉
+
〈
v2
y

〉
+
〈
v2
z

〉
= 3

〈
v2
‖
〉

(8.11)

Assuming that the velocity dispersion is independent of mi gives:

Ekin =
1

2

∑

i

miv
2
i =

3

2
M
〈
v2
‖
〉

(8.12)

where M is the total mass.

If the cluster is spherically symmetric =⇒ Define weighted mean separation Rcl, such that

Epot =
GM2

Rcl
(8.13)

From Eqs. (8.12) and (8.13):

M =
3

G

〈
v2
‖
〉
Rcl (8.14)

E.g.: v‖ ∼ 1000 km s−1, R ∼ 1 Mpc =⇒M = 1.4× 1048 g = 7× 1014M� (MW: 6× 1011M�).



8–13

Derivation of the Virial Theorem

Assume system of particles, each with mass mi. Acceleration on particle i:

r̈ =
∑

j 6=i

Gmj(rj − ri)

|rj − ri|3
(8.15)

. . . scalar product with miri

miri · r̈i =
∑

j 6=i

Gmimjri · (rj − ri)

|rj − ri|3
(8.16)

. . . since

1

2

d2
r

2
i

dt2
=

d

dt
(ṙi · ri) = r̈i · ri + ṙi · ri (8.17)

. . . therefore Eq. (8.16)

1

2

d2

dt2
(mir

2
i )−miṙi

2 =
∑

j 6=i

Gmimjri · (rj − ri)

|rj − ri|3
(8.18)

Summing over all particles in the system gives

1

2

∑

i

d2

dt2
(mir

2
i )−

∑

i

miṙi
2 =

∑

i

∑

j 6=i

Gmimjri · (rj − ri)

|rj − ri|3
(8.19)

=
1

2



∑

i

∑

j 6=i

Gmimj
ri · (rj − ri)

|ri − rj |3
+
∑

j

∑

i 6=j

Gmjmi
rj · (ri − rj)

|rj − ri|3


 (8.20)

=
1

2


∑

i

∑

j 6=i

Gmimj
ri · rj − r

2
i

|ri − rj |3
+
∑

j

∑

i6=j

Gmjmi

rj · ri − r
2
j

|rj − ri|3


 (8.21)

= −1

2

∑

i,j
i6=j

Gmimj

|ri − rj |
(8.22)



8–13

Thus, identifying the total kinetic energy, T , and the gravitational potential energy, U , gives

2T − U =
1

2

d2

dt2

∑

i

mir
2
i = 0 (8.23)

in statistical equilibrium.

Thus we find the virial theorem: T = 1
2 |U |
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Determination of Ωm 11

Galaxy Clusters, III

More detailed analysis using

more complicated mass models

gives (Merritt, 1987):

M

L
∼ 350h−1 M�

L�
(8.24)

while we would have expected

M/L = 10 . . . 20 as for galaxies

Dark matter is an important

constituent in galaxy clusters

Abell 370 (VLT UT1+FORS)



Abell 2029, Palomar Schmidt [DSS]



Abell 2029, Soft X-rays (Chandra; NASA/CXC/UCI/A.Lewis et al.)



Abell 2029, Optical and X-rays (XMM-Newton; Andy Read [Leicester]/DSS/ESA; larger FoV)
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Determination of Ωm 15

X-ray emission, IV

X-ray emission from galaxy clusters gives mass to higher precision:

Assume gas in potential of galaxy cluster. If gas is in hydrostatic equilibrium:

dP

dr
= −GMrρ

r2
(8.25)

where the pressure P can be determined from the equation of state:

P = nkT =
ρkT

µmH
(8.26)

where mH: mass of H-atom, µ mean molecular weight of gas (µ = 0.6 for fully ionized).

Differentiating Eq. (8.26) wrt r gives

dP

dr
=

k

µmH

(
T

dρ

dr
+ ρ

dT

dr

)
=
ρkT

µmH

(
d log ρ

dr
+

d log T

dr

)
(8.27)

Inserting dP/dr into Eq. (8.25) and solving for Mr gives

Mr = − kTr2

GµmH

(
d log ρ

dr
+

d log T

dr

)
(8.28)
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Determination of Ωm 16

X-ray emission, V

To determine Mr, we need to measure T (r) and ρ(r). These quantities can be obtained from the

observed X-ray spectrum:

0.1 1 10

10
−

7
10

−
6

10
−

5

ke
V

/c
m2

 s
 k

eV

Energy

Theoretical X-ray spectrum of a cluster.

Cluster gas mainly radiates by

bremsstrahlung emission, with a spectral

continuum shape

ε(E) ∝
(
me

kT

)1/2

g(E, T )nne exp

(
− E

kT

)

(8.29)

where

n: number density of nuclei,

ne: number density of electrons,

g(E, T ): Gaunt factor (QM correction factor,

roughly constant).

plus emission lines. . .

=⇒ T (r) can be obtained from the X-ray spectral shape, n and ne from the measured flux

=⇒Mr.



(Wise, McNamara & Murray, 2004, Fig. 2)

X-ray spectrum of A1068 obtained from Chandra



(Wise, McNamara & Murray, 2004, Fig. 8)

Temperature distribution in A1068 obtained with Chandra





Technical problems:
• see through cluster

=⇒ integrate over line of
sight, assuming spherical
geometry.

• spherical geometry is
assumed

• it is unclear whether gas
is in hydrostatic
equilibrium (cooling flows?
– but note, there is sparse
evidence for a “flow”)

XMM-Newton, EPIC-pn

Result for Coma:
MB

Mtot
= 0.01 + 0.05h−3/2 (8.30)
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Determination of Ωm 21

X-ray emission, X

(Mohr, Mathiesen & Evrard, 1999)

Generally: assume intensity profile from
β-model,

I(r)

I0
=

(
1 +

(
r

Rc

)2
)−3β+1

2

(8.31)

and obtain T from fitting X-ray spectra to
“shells” =⇒ technically complicated. . .

Summary for X-ray mass determination
for 45 clusters (Mohr, Mathiesen & Evrard,
1999):

fgas = (0.07± 0.002)h−3/2 (8.32)

resulting in

Ωm = Ωb/fgas = (0.3± 0.05)h−1/2

(8.33)
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Determination of Ωm 22

Sunyaev-Zeldovich, I

NASA/CXC/M.Weiss

Gas in cooling flow influences CMBR by Compton upscattering

=⇒ Sunyaev-Zeldovich effect (1970).
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Determination of Ωm 23

Sunyaev-Zeldovich, II

The quantitative derivation of the SZ-effect is difficult, basically, one sets up the Fokker-Planck

equation for the photon gas and from this derives the so-called Kompaneets equation, see, e.g.,

Peacock (1999, p. 375ff.).

in mmλ 
10 3 1

0.1

0.05

0.2
0.3

0.5

1.0

re
l. 

in
te

ns
ity

after Schneider

The basic ingredients are the optical depth for

Compton scattering (Compton y-parameter):

y =

∫ (
kTe

mec2

)
σTNe dl (8.34)

From this follows in the Rayleigh-Jeans regime

that the intensity due to Compton upscattering

changes as follows:

∆I

I
= −2y ∼ 10−4 (8.35)

(for typical parameters).

=⇒ ∆I allows to measure of
∫
NeTe dl

=⇒ Mass!

T is known from X-ray spectrum.



(temperature decrement from 3 K background, Carlstrom et al., 2000, Fig. 3)

SZ analysis gives gas fraction

for 27 clusters

fgas = (0.06± 0.006)h−3/2

(8.36)

remarkably similar to X-ray result
=⇒ clumping of gas does not
influence results! (SZ only traces
real gas. . . )

fgas translates to

Ωm = (0.25±0.04)h−1 (8.37)
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Determination of Ωm 26

Gravitational Lenses, II

α

D

D

Lens

Source

L LS

S

D

θ

~

(after Longair, 1998, Fig. 4.8a)

GR: Angular deflection of light due to presence of mass M :

α̃ =
4GM

θc2
=

2

c2
· 2GM

θ
(8.38)

where θ: distance of closest approach (twice the classical result).
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Determination of Ωm 27

Gravitational Lenses, III

~

~

D L

D LS

D S

ZS D S

α

D LS S1α

D S

ξ

β

θ

α

β S

θ

after Wambsganss (1998, Fig. 3)

In the small angle approximation:

θDS = βDS + α̃DLS (8.39)

such that

β = θ − DLS

DS
α̃ (8.40)

Defining the reduced deflection angle,

α =
DLS

DS
α̃ =

DLS

DS
· 2

c2
· 2GM

θ
(8.41)

then gives the lens equation

β = θ − α = θ − DLS

DLDS
· 4GM

c2θ

= θ − 1

D
· 4GM

c2θ
(8.42)

where

D =
DLDS

DLS
(8.43)

(last expression valid for a point-mass)



Einstein ring: source directly behind lens,

Obtain radius by setting β = 0 in lens-equation

(Eq. 8.42):

θ2
E =

4GM

c2

1

D
(8.44)

i.e.,

θE = 98.9′′
(

M

1015M�

)1/2

1

(D/1 Gpc)1/2
(8.45)

Mass measurements possible by observing

“giant luminous arcs” and Einstein rings.



General results of mass

determinations from lensing

agree with other methods.
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Determination of Ωm 30

Summary

So far, we have seen:

Photons:
Ωγh

2 = 2.480× 10−5 (8.46)

Neutrinos:
Ωνh

2 = 1.69× 10−5 (8.47)

Baryons (from nucleosynthesis):

Ωbh
2 = 0.02 where Ωstars ∼ 0.005 . . . 0.01 (8.48)

Baryons+dark matter (from clusters):

Ωm ∼ 0.25 (8.49)

(of which ∼ 10% in baryons)

If we believe in Ωtotal ≡ 1 =⇒ ΩΛ ∼ 0.7.



0$77(5���(1(5*<�LQ�WKH�81,9(56(
727$/

0$77(5�&20326,7,21 '$5.�(1(5*<
1 �������

���������
0$77(5

&'0

���������
����������

������
0.1

%$5<216

������������

1(875,126

0.01

67$56
�������������

!������

0.001

(Turner, 1999, Fig. 1, numbers slightly different to ours. . . )
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Dark Matter 1

Introduction

Clusters and galaxies: Ωm ∼ 0.3, but for baryons Ωb ∼ 0.02

=⇒ Rest of gravitating material is dark matter.

=⇒ There are two dark matter problems:

Ωm
nonbaryonic dark matter←−−−−−−−−−−−− Ωb

baryonic dark matter←−−−−−−−−−− Ωstars

baryonic dark matter= undetected baryons:

• diffuse hot gas?

• MACHOs (Massive compact halo objects; white dwarfs, neutron stars,

black holes, brown dwarfs, jupiters,. . . )

nonbaryonic dark matter= exotic stuff:

• massive neutrinos

• axions

• neutralinos
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Dark Matter 2

Baryonic Dark Matter, I

Intra Cluster Gas:

Pro:

1. same location where the hot gas in clusters also found,

2. structure formation suggests most baryons are not in structures today

Contra:

1. 90% of the universe is not in clusters. . .

2. gas has not been detected at any wavelength

If gas cold enough, would not expect it to be detectable, so point 2 is not really valid.
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Dark Matter 3

Baryonic Dark Matter, II

MACHOS:

Pro:
1. detected by microlensing

towards SMC and LMC (see

figure) =⇒ MW halo consists

of 50% WD

Contra:
1. possible “self-lensing” (by

stars in MW or SMC/LMC;

confirmed for a few cases)

2. where are white dwarfs?

3. WD formation rate too high

(100 year−1 Mpc−3)

(Alcock et al., 2001, Fig. 2)
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Dark Matter 4

Nonbaryonic Dark Matter

Nonbaryonic dark matter:

Requirements: must be gravitating and non-interacting with baryons

=⇒ Grab-box of elementary particle physics:

1. Neutrinos with non-zero mass
Pro: It exists, mass limits are a few eV, need only 〈mν〉 ∼ 10 eV

Contra: ν are relativistic =⇒ Hot dark matter =⇒ Forces top down structure formation,

contrary to what is believed to have happened.

2. Axion
(=Goldstone boson from QCD, invented to prevent strong CP violation in QCD; m ∼ 10−5...−2 eV)

Pro: It could exist, would be in Bose-Einstein condensate due to inflation (=⇒ Cold dark

matter!), might be detectable in the next 10 years

Contra: We do not know it exists. . .

3. Neutralino or other WIMPs (weakly interacting massive particles; masses

m ∼ GeV)
Pro: Also is CDM

Contra: We do not know they exist. . .
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Friedmann with nonzero Lambda 1

Friedmann with Λ 6= 0, I

=⇒ Need to study cosmology with Λ 6= 0.

Reviews: Carroll, Press & Turner (1992), Carroll (2001)

Friedmann equation with Λ 6= 0:

H2(t) =

(
Ṙ

R

)2

=
8πGρ

3
− kc2

R2
+

Λc2

3
(7.30)

And define the Ω’s (Eqs.4.58, 7.14):

Ωm =
8πGρm

3H2
0

, ΩΛ =
Λc4

3H2
0

, Ωk = − kc2

R2
0H

2
0

(8.50)

Because of Eq. (7.30),

Ωm + ΩΛ + Ωk = Ω + Ωk = 1 (8.51)
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8–40

Friedmann with nonzero Lambda 2

Friedmann with Λ 6= 0, II

It is easier to set c = 1 and to work with the dimensionless scale factor,

a =
R(t)

R0
(4.29)

=⇒ Friedmann: (
ȧ

a

)2

=
8πG

3

ρm,0

a3
− k

a2R2
0

+
Λ

3
(8.52)

since ρm = ρm,0a
−3 (Eq. 4.63).

Inserting the Ω’s (
ȧ/H0

a

)2

=
Ωm

a3
+

1− Ωm − ΩΛ

a2
+ ΩΛ (8.53)

Substituting the time in units of todays Hubble time,

τ = H0 · t (8.54)

results in
(

da

dτ

)2

= 1 + Ωm

(
1

a
− 1

)
+ ΩΛ(a2 − 1) where a(τ = 1) = 1 and

da

dτ

∣∣∣∣
τ=1

= 1 (8.55)

For most combinations of Ωm and ΩΛ, need to solve numerically.



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

8–41

Friedmann with nonzero Lambda 3

Friedmann with Λ 6= 0, III

−1 0 1 2 3
Ω=Ωm+ΩΛ

0

1

2

3

Ω
m

sp
at
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Λ=0

Λ>0

Λ<0

re
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ps

e 
in 

fin
ite

 tim
e

un
bo

un
d 

ex
pa

ns
ion

No Big Bang

Loitering

(after Carroll, Press & Turner, 1992, Fig. 1)

With Λ, evolution of universe is

more complicated than without:

• unbound expansion possible

for Ω < 1,

• For ΩΛ large: no big bang!

• For ΩΛ large: possible

“loitering phase”
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Friedmann with nonzero Lambda 4

ΩΛ > 1, I

−3 −2 −1 0 1
Time from today in units of H0 t

0

1

2

3

4

a

Loitering Phase

Today

For large ΩΛ: contraction from +∞
and reexpansion

=⇒ no big bang.

For slightly smaller ΩΛ: phase where

ȧ ∼ 0 in the past

=⇒ loitering universe.

“Loitering universe” with Ωm = 0.55,
ΩΛ = 2.055
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8–43

Friedmann with nonzero Lambda 5

ΩΛ > 1, II

QSO at z = 5.82, courtesy SDSS

Threshold for presence of a turning-point

(Carroll, Press & Turner, 1992, Eq. 12):

ΩΛ ≥ ΩΛ,thresh = 4Ωm

{
Cκ

[
1

3
C−1
κ

(
1− Ωm

Ωm

)]}3

(8.56)

where κ = sgn(0.5− Ωm) and Cκ(θ) was

defined in Eq. (4.24).

For ΩΛ = ΩΛ,thresh: turning-point, i.e., there is a

minimal a.

Since 1 + z = 1/a (Eq. 4.40), existence of turning-point =⇒ maximal possible z:

z ≤ 2Cκ

(
1

3
C−1
κ

{
1− Ωm

Ωm

})
− 1 (8.57)

(Carroll, Press & Turner, 1992, Eq. 14). Since quasars are observed with z > 5.82, this means

that Ωm < 0.007, clearly not what is observed =⇒ ΩΛ < 1.
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8–44

Friedmann with nonzero Lambda 6

ΩΛ < 1

-1 0 1 2 3
τ=H0 t

0

2

4

6

a(
τ)

Ωm=0.3 and

... ΩΛ=0.7

... ΩΛ=0.5

... ΩΛ=0.1

... ΩΛ=0.0

Today

For ΩΛ < 1 evolution has two parts:

• matter domination, similar to earlier results

• Λ domination, exponential rise.

Exponential rise called by some workers the “second inflationary phase”. . .
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8–45

Friedmann with nonzero Lambda 7

ΩΛ < 1

Calculation of age of universe is similar to ΩΛ = 0 case (see, e.g., Eq. 4.81), but

generally only possible numerically.

Result:

Universes with ΩΛ > 0 are older than those with ΩΛ = 0.

This solves the age problem, that some globular clusters have age comparable to age of universe if ΩΛ = 0.

Analytical formula for age (Carroll, Press & Turner, 1992, Eq. 17):

t =
2

3H0

sinh−1
(√

(1− Ωa)/Ωa

)

√
1− Ωa

(8.58)

for Ωa < 1, where

Ωa = 0.7Ωm + 0.3(1− ΩΛ) (8.59)

For Ωm = 0.3, ΩΛ = 0.7, H0 = 70 km s−1 Mpc−1: t = 13.5 Gyr.

Remember that for Ωm = 1, t = 3/2H0!
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8–46

Determination of ΩΛ 1

Luminosity Distance, I

Influence of Λ is most prominent at large distances!

=⇒ Expect influence on Hubble Diagram.

=⇒Need to find relation between measured flux, emitted luminosity, and

redshift.

Assume source with luminosity L at comoving coordinate r, emitting isotropically

into 4π sr.

At time of detection today, photons are

• on sphere with proper radius R0r,

• redshifted by factor 1 + z,

• spread in time by factor 1 + z.

=⇒ observed flux is

F =
L

4πR2
0r

2(1 + z)2
(8.60)
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8–47

Determination of ΩΛ 2

Luminosity Distance, II

Because the observed flux is

F =
L

4πR2
0r

2(1 + z)2
(8.60)

in analogy to the inverse square law one defines the luminosity distance as

dL = R0 · r · (1 + z) (8.61)

The calculation of dL is somewhat technical, one can show that (Carroll, Press & Turner, 1992):

dL =
c

H0
|Ωk|−1/2 · S−sgn(Ωk)

{
|Ωk|1/2

∫ z

0

[
(1 + z)2(1 + Ωmz)− z(2 + z)ΩΛ

]1/2
dz
}

(8.62)
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8–48

Determination of ΩΛ 3

Supernovae

Best way to determine ΩΛ:

Type Ia supernovae

Remember: SN Ia = CO WD collapse. . . (Hoyle, Fowler, Colgate, Wheeler,. . . )

The distance modulus is

m−M = 5 log

(
dL

1 Mpc

)
+ 25 (8.63)

Use SNe as standard candles =⇒ Deviations from dL ∝ z indicative of Λ.

Two projects:

• High-z Supernova Team (STSCI, Riess et al.)

• Supernova Cosmology Project (LBNL, Perlmutter et al.)

Both find SNe out to z ∼ 1.

Present mainly Perlmutter et al. results here, Riess et al. (1998) are similar.
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8–49

Determination of ΩΛ 4

Supernovae

Basic observations: easy:

• Detect SN in rise =⇒ CTIO 4 m

• Follow SN for ∼ 2–3 months with 2–4 m class telescopes, HST, Keck. . .

More technical problems in data analysis: Conversion into source frame:

• Correction of photometric flux for redshift: “K-correction”

• Correct for time dilatation in SN light curve

Further things to check

• SN internal extinction

• Galactic extinction

• Galactic reddening

• Photometric cross calibration

• Peculiar motion of SN
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8–50

Determination of ΩΛ 5

Supernovae

Calan/Tololo
(Hamuy et al, 
A.J. 1996)

Supernova
Cosmology
Project

ef
fe

ct
iv

e 
 m

B

(0.5,0.5)    (0, 0)
( 1,    0 )    (1, 0)
(1.5,–0.5)  (2, 0)

(ΩΜ,ΩΛ) = 
( 0,   1 )

Fl
at

Λ
 =

 0

redshift  z

14

16

18

20

22

24

26

0.02   0.05    0.1 0.2   0.5     1.00.02   0.05    0.1 0.2   0.5     1.0

 
 

(Perlmutter et al., 1999, Fig. 1)

Vertical error bars:

measurement

uncertainty plus

0.17 mag intrinsic mag.

dispersion

Horizontal error bars:

300 km s−1 peculiar

velocity uncertainty

42 SNe from SCP, 18 low redshift from Calán/Tololo SN Survey



Calan/Tololo
(Hamuy et al, 
A.J. 1996)

Supernova
Cosmology
Project
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(0.75,   0.25 ) 
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(0,        1 )
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redshift  z

14

16

18

20

22

24

 
 

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
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-6
-4
-2
0
2
4
6

Best fit: Ωm, flat = 0.28+0.09
−0.08,

χ2/DOF = 56/50
corresponding best free fit:
(Ωm,ΩΛ) = (0.73, 1.32).

(Perlmutter et al., 1999, Fig. 2)



Updated 2002 Hubble

diagram for SN Iae

confirms Perlmutter

1999.

Sullivan et al., 2002
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No Stretch Correction

Bias with One-Sided
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(68% and 90% confidence contours for
sources of systematic error, Perlmutter et al.,
1999, Fig. 5)
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Combined confidence region (Perlmutter et al.,
1999, Fig. 7; lower right: universes that are
younger than oldest heavy elements)
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H0t0 
63 km s-1 Mpc-1

=

Isochrones for age of universe

for H0 = 63 km s−1 Mpc−1 (for

h = 0.7: age 10% smaller).

=⇒ Consistent with globular

cluster ages!

(Perlmutter et al., 1999, Fig. 9)
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8–56

Summary 1

Summary

For all practical purposes, currently the best values of Ωm and ΩΛ are

Ωm ∼ 0.3 and ΩΛ = 0.7

Even if Ω 6= 1:

ΩΛ 6= 0

And therefore

Baryons are an energetically unimportant constituent of the universe.

“The dark side of the force. . . ” :-)
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8–57

Summary 2

Outlook

What is physical reason for ΩΛ 6= 0?

Currently discussed: quintessence: “rolling scalar field”, corresponding to very

lightweight particle (λde Broglie ∼ 1 Mpc), looks like time varying cosmological

“constant”.

Why? =⇒ More naturally explains why ΩΛ so close to 0 (i.e., why matter and

vacuum have so similar energy densities)

Motivated by string theory and M theory. . .

Still VERY SPECULATIVE, decision Λ vs. quintessence should be possible in

next 5. . . 10 years when new instruments become available.
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8–58

Summary 3

Outlook
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Bahcall et al.

Even better constraints come from combination of SNe data with

structure formation.
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9–1

Large Scale Structures and Structure Formation
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9–2

The Lumpy Universe 1

The Lumpy Universe

So far: treated universe as smooth universe.

In reality:

Universe contains structures!

Last part of this class:

1. What are structures?

2. How can we quantify them?

3. How do structures form?

4. How do structures evolve?

Will see that all these questions are deeply connected with parameters of the

universe seen so far:

1. H0

2. Ω0, Ωb, Ωm, ΩΛ,. . .

3. Existence and Nature of Dark Matter
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9–3

Redshift Surveys 1

Introduction, I

(de Lapparent, Geller & Huchra, 1986, limiting mag mB = 15.6)

Lumpy universe: spatial distribution of galaxies and greater structures.
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9–4

Redshift Surveys 2

Introduction, II

How do we study the structure of the Universe?

=⇒We need distance information for many (104. . . 107) objects

=⇒ Large redshift surveys

Review: Strauss & Willick (1995)

Redshift survey: Survey of (patch of) sky determining galaxy z and position to

predefined magnitude or z.

First larger survey: de Lapparent, Geller & Huchra (1986)

Classification:

1D-surveys: very deep exposures of small patch of sky, e.g. HST Deep Field, Lockman Hole

Survey, Marano Field.

2D-surveys: cover long strip of sky, e.g., CfA-Survey (1.5× 100◦), 2dF-Survey (“2 degree Field”).

3D-surveys: cover part of the sky, e.g., Sloan Digital Sky Survey.

These surveys attempt to go to certain limit in z or m.

Other approaches: use pre-existing galaxy catalogues (e.g., QDOT Survey [IRAS galaxies], APM survey,. . . ).

We will concentrate here on the larger surveys based on no other catalogue.
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9–5

Redshift Surveys 3

Introduction, III

(Strauss, 1999)



To go deep one needs to go to space



STScI
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9–8

Redshift Surveys 6

Hubble Space Telescope, II

The Hubble Space Telescope has a large set of instruments well suited for

cosmological observations:

Current HST Instruments :

• ACS: Advanced Camera for Surveys (03.2002–)

• NICMOS: Near Infrared Camera and Multi Object Spectrometer (02.1997–)

• STIS: Space Telescope Imaging Spectrograph (02.1997–2004)

• WFPC2 The Wide Field Planetary Camera 2 (12.1993–)

• FGS: The Fine Guidance Sensors

Former Generation Instruments :

• FOC: The Faint Object Camera (04.1990–03.2002)

• FOS: The Faint Object Spectrograph (04.1990–02.1997)

• GHRS: The Goddard High Resolution Spectrograph (04.1990–02.1997)

• HSP: The High Speed Photometer (04.1990–10.1993)

• WF/PC-1: Wide Field Planetary Camera 1 (04.1990–10.1993)



1995 December: Hubble

Deep Field:

∼ 150 ksec/Filter for four

HST Filters

Many galaxies with weird

shapes =⇒ protogalaxies!

Redshifts: z ∈ [0.5, 5.3]

(Fernández-Soto et al.,

1999)





1998: Hubble Deep Field

South, 10 d of total

observing time!



2004: Hubble Ultra

Deep Field, 1 Msec

long exposure of field

in Fornax. Uses

updated HST with

Advanced Camera for

Surveys (ACS) and

Near Infrared Camera

and Multi-Object

Spectrometer

(NICMOS); diameter:

3′ (2× older HDF)

Limiting magnitude:

30 mag, ∼10000

galaxies visible, up to

z & 7

IR reveals many

reddened objects







Lockman Hole: Northern

Sky region with very low

NH

=⇒ low interstellar

absorption

=⇒ “Window in the sky”

=⇒X-rays: evolution of

active galaxies with z!

XMM-Newton, Hasinger et al.,
2001,
blue: hard X-ray spectrum,
red: soft X-ray spectrum



Chandra Deep Field South:

1 Msec (10.8 days) on one

region in Fornax

(αJ2000.0 = 3h32m28.0s,

δJ2000.0 = −27◦48′30′′,
coaligned with HDF-S

Deepest X-ray field ever

color code: spectral hardness

scale: 15′ × 15′; courtesy

NASA/JHU/AUI/R.Giacconi et

al.





1D Surveys (“Deep

Exposures”) give

snapshot of evolution

of galaxies over

large z.

Deep XMM-Newton image

of the Marano Field

(IAAT/AIP/MPE)



HST Chandra

Chandra/HST Image of Hubble Deep Field North; 500 ksec

Joint multi-wavelength campaigns allow the measurement of broad-band spectra of

sources in the early universe!



=⇒ GOODS-Survey (Great Observatories Origins Deep Survey), centered on CDF-S

(same image as before, this time smoothed)



IR, optical, and X-ray

image of small fraction of

GOODS

CXC/NASA



Chandra and HST fields aligned



HST ACS observations of

whole area of CDF-S

CXC



CDFS: blue boxes contain objects not visible in HST

=⇒ farthest black holes known



STScI/Caltech

1/200th of the whole GOODS field in optical and IR
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2D/3D Surveys: Technology

Future for Large Scale Structure: 2D and 3D Surveys observing large part of sky

with dedicated instruments.

Currently largest surveys:

Las Campanas Redshift Survey (LCRS): 26418 redshifts in six 1.5× 80◦

slices around NGP and SGP, out to z = 0.2.

CfA Redshift Survey: 30000 galaxies

APM: (Oxford University) 2 ∼ 106 galaxies, 107 stars around SGP, 10% of sky,

through B = 21 mag.

2MASS: IR Survey of complete sky (Mt. Hopkins/CTIO) completed

2000 October 25), 3 bands, ∼ 2× 106 galaxies, accompanying redshift

survey (8dF, CfA)

Sloan Digital Sky Survey (SDSS): dedicated 2000 October 5, Apache Point

Obs., NM, 25% of whole sky, ∼ 108 objects, now in Google Earth

And many more (e.g., Keck, ESO, LSST,. . . ).



SDSS 2.5 m telescope at Apache

Point Observatory

courtesy SDSS
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2D/3D Surveys: Technology

CCD alignment of SDSS:

• focal plane: 2.5◦,
• 5 rows of 2048× 2048 CCDs with r, i,

u, z, g filters, saturation at r = 14

• 22 2048× 400 CCD, saturation at r =

6.6 for astrometry

Imaging by slewing over CCD Array

(Strauss, 1999, Fig. 5)



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

9–28

Redshift Surveys 27

2D/3D Surveys: Technology

CCD alignment of SDSS:

• focal plane: 2.5◦,
• 5 rows of 2048× 2048 CCDs with r, i,

u, z, g filters, saturation at r = 14

• 22 2048× 400 CCD, saturation at r =

6.6 for astrometry

Imaging by slewing over CCD Array

SDSS
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2D/3D Surveys: Technology

courtesy SDSS

Spectroscopy with grism (combination of prism and grating), light from objects

via optical fibers and plug plate.



-500 0 500

-500

0
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Galaxy distribution

from the SDSS

(Tegmark et al., 2004, Fig. 4)



courtesy 2dF collaboration



South

12434 galaxies

North

11263 galaxies

cz (1000 km/s)
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Galaxies in APM catalogue, color: avg. B in pixel: blue (18) – green (19) – red (20)
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