

1 Der Higgs-Mechanismus 1.1 Modelvorstellung

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Das "Celebrity at party"-Model

Higgs-Hintergrundfeld erfüllt den Raum

Ein Teilchen im Higgs-Feld...

Prof. D. Miller UC London ... Widerstand gegen Bewegung ... Trägheit ↔ Masse

 \Rightarrow Teilchenmasse wird durch die Stärke der Wechselwirkung mit dem Higgs-Feld festgelegt.

Page 2

Christopher Braun

Dezember-07 Christopher Braun Scheinseminar Astro- und Teilchenphysik WS 07/08

1 Der Higgs-Mechanismus 1.2 Standard Model und Erweiterungen

Bis dahin noch keine Erklärung für die Herkunft der Teilchenmassen.

- \rightarrow Erweiterung des SM durch:
- Spontane Symmetriebrechung
- Eichtheorie

teachers.web.cern.ch/teachers

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland

(Received 31 August 1964)

Page 3

19 October 1964

Friedrich-Alexander-Universität

Erlangen-Nürnberg

1.2 Standard Model und Erweiterungen 1.2.1 Spontane Symmetriebrechung Friedrich-Alexander-Universität Erlangen-Nürnberg

QFT: Systeme werden durch ihre Lagrangefunktion /-dichte beschrieben

$$\mathsf{L} = \mathsf{T} - \mathsf{V} \; ; \; \mathsf{L} = \int \mathrm{d}^3 x \; \mathscr{L}$$

T = kinetische Energie , V = Potential , \mathcal{L} = Lagrangedichte

Annahme: Selbstwechselwirkung eines reellen Skalarfeldes Φ:

Higgs-Potential: $V = \mu^2 |\Phi|^2 + \lambda |\Phi|^4$

$$\Rightarrow$$
 L = $\partial_{\mu} \Phi \partial^{\mu} \Phi$ - $\mu^2 |\Phi|^2$ - $\lambda |\Phi|^4$

mit $\mu^2 |\Phi|^2 = Masseterm$, $\lambda |\Phi|^4 = Selbst-WW-Term$

Dezember-07 Christopher Braun Scheinseminar Astro- und Teilchenphysik WS 07/08

 \rightarrow System entscheidet sich 'spontan' für einen der beiden Grundzustände \Rightarrow Symmetrie ist gebrochen

Page 5

Christopher Braun

1.2 Standard Model und Erweiterungen 1.2.1 Spontane Symmetriebrechung

Einführung eines komplexen Skalarfeldes

$$\Phi = \frac{1}{\sqrt{2}} (\Phi_1 + i\Phi_2)$$

Nun existieren unendlich viele, energetisch entartete Grundzustände

 \rightarrow Eichsymmetrie der Wechselwirkung im Grundzustand nicht mehr realisiert

Page 7Dezember-07Christopher BraunScheinseminar Astro- und Teilchenphysik WS 07/08

1.2 Standard Model und Erweiterungen 1.2.1 Spontane Symmetriebrechung

Nun entwickelt man die Lagrangedichte um Punkte auf dem Kreis der Minima, dann ist:

- Φ_2 das Skalarfeld eines Teilchens mit der Masse 0 \Rightarrow Goldstone-Boson
- Φ_1 das Skalarfeld eines Teilchens mit der Masse $m = \sqrt{-2\mu^2} = \sqrt{2\lambda v^2}$ \Rightarrow Higgs-Boson

⇒ Higgs-Boson ist Quant des Higgs-Feldes, vgl. γ und e.m. Feld ⇒ Allgemeinen gilt: Für jede Symmetriebrechung kommt ein Goldstone-Boson hinzu

$\Phi \rightarrow e^{i\theta_0} \Phi$

Langrangefunktion des komplexen Skalarfeldes besitzt bereits eine globale U(1)

Eichinvarianz

$$\Phi(x) \to e^{-i\theta(x)} \Phi(x) \quad ; \quad A_{\mu}(x) \to A_{\mu}(x) + e^{-i}\partial_{\mu}\theta(x)$$

Auch nach der lokalen Eichung erhält man wieder ein Goldstone- und ein Higgs-Boson als Lösung Nun aber massives Eichfeld A_u

1.2 Standard Model und Erweiterungen 1.2.2 Eichtheorie

$$\Phi = \frac{1}{\sqrt{2}} (\Phi_1 + i\Phi_2)$$

Erlangen-Nürnberg

Friedrich-Alexander-Universität

1.2 Standard Model und Erweiterungen 1.2.2 Eichtheorie

Friedrich-Alexander-Universität Erlangen-Nürnberg

Erweiterung zur elektroschwachen Feldtheorie:

- e.m. Feldstärketensor $F_{\mu\nu}$ in der Lagrangefunktion berücksichtigen
- Skalarfeld mit vier Komponenten

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \chi_1 + i \psi_1 \\ \chi_2 + i \psi_2 \end{pmatrix}$$

Erweiterung führt zu:

- Isospin-Triplett W⁺, W⁻, W⁰ (Ladung g)
- Isospin-Singulett B⁰ (Ladung g')
- Linearkombinationen von W⁰ und B⁰ ergeben Felder Z⁰ und γ

\Rightarrow elektroschwache Vereinheitlichung

Page 9Dezember-07Christopher BraunScheinseminar Astro- und Teilchenphysik WS 07/08

1 Der Higgs-Mechanismus 1.2 Standard Model und Erweiterungen

Friedrich-Alexander-Universität Erlangen-Nürnberg

Vollständige Lagrangedichte des Higgs-Bosons

$$\mathcal{L} = \left(D_{\mu}\phi\right)^{\dagger} \left(D^{\mu}\phi\right) + m\phi^{\dagger}\phi - \lambda\left(\phi^{\dagger}\phi\right)^{2} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

mit kovariantem Ableitungsoperator

$$D_{\mu}\phi = \left[\partial_{\mu} + igW_{\mu} + g'\frac{Y}{2}B_{\mu}\right]\phi$$

Kopplungsterme an schwache und e.m. Wechselwirkung

mit

Y = Hyperladung

Page 10

1 Der Higgs-Mechanismus 1.2 Standard Model und Erweiterungen

Nach analogen Vorgehen, also:

- 1) spontane Symmetriebrechung für $\lambda > 0$ und $\mu^2 < 0$
- 2) globale und lokale Eichung

Erhält man:

Massenterme f
ür die massiven Eichbosonen W⁺,W⁻ und Z⁰

$$m_{W^{\pm}} = \frac{gv}{2} \quad ; \quad m_Z = \sqrt{g^2 + g'^2} \frac{v}{2}$$

mit $v = 246 \, GeV$

Massenterm f
ür das Higgs-Boson

$$m_{H} = \sqrt{2\lambda v^{2}}$$

wobei λ freier Parameter im SM ist.

• Symmetrie des e.m. Eichfeldes A_{μ} bleibt ungebrochen $\rightarrow m_{\gamma}=0$

Page 11Dezember-07Christopher BraunScheinseminar Astro- und Teilchenphysik WS 07/08

Friedrich-Alexander-Universität **Erlangen-Nürnberg**

Scheinseminar Astro- und Teilchenphysik WS 07/08

Noch nachzuweisen:

H⁰: 20?? Am LHC am CERN (Theorie von Peter W. Higgs 1964)

Z⁰: 1973 - neutrale Ströme in Blasenkammer

Bislang experimentell nachgewiesen:

W⁺ und W⁻: 1983 am SPS / CERN $m_W = 80.403 \pm 0.029 \text{ GeV}$; $m_{W+}-m_{W-} = -0.2 \pm 0.6 \text{ GeV}$

BEBC / CERN 1983 - Masse des Z⁰ SPS / CERN (NP 1984) m₇ = 91.1876 ± 0.0021 GeV

1 Der Higgs-Mechanismus Erlangen-Nürnberg 1.3 Experimentelle Bestätigung des Standard Models

Big European Bubble Chamber

Friedrich-Alexander-Universität

2 Das Experiment: LHC 2.1 Allgemeines zum LHC

Friedrich-Alexander-Universität

Erlangen-Nürnberg

LHC = Large Hadron Collider

 Proton-Proton Ringbeschleuniger/collider im Tunnel des ehemaligen LEP (e⁻e⁺-Maschine) am CERN n\u00e4he Genf

14 TeV Schwerpunktsenergie E_{CM}
 (2 x 7 TeV) [LEP-II 200 GeV]

27 km Tunnelumfang, in 70 – 100m
 Tiefe

- 4 Experiment in 4 unterirdischen Hallen
 - ATLAS: pp-Physik
 - CMS: pp-Physik
 - ALICE: Pb-Pb Kollisionen ; Untersuchung des QGPs
 - LHCb: b-Physik ; CP-Violation

Panoramabild über CERN, Genfer See, Alpen

Page 13

Christopher Braun

2 Das Experiment: LHC2.1 Allgemeines zum LHC

Friedrich-Alexander-Universität

Erlangen-Nürnberg

2 Das Experiment: LHC 2.2 Eckdaten des LHC

Technische Eckdaten:

- 1232 supraleitende Dipolmagnete (15 m, B = 8.3 T, T = 1.9 K)
- 8 supraleitende HF-Kavitäten (Beschleunigungsgradient von 5 MV/m)
- Umlauffrequenz: f = 11.245 kHz
- 362 MJ gespeicherte Energie pro Beam
- 2808 Bunches je Ring
- 25 ns (= 7.5 m) bunch Abstand
- 1.15 x 10¹¹ Protonen / bunch
- Synchrotron Strahlungsleistung: 3.6 x 10³ W Energieverlust pro Umlauf ΔE_{LHC} ≈ 7 keV (ΔE_{LEP} ≈ 10⁵ ΔE_{LHC})
- größtes Tieftemperatur- und UHV-System weltweit

Dezember-07 Chr

Friedrich-Alexander-Universität

Page 15

2.2 Eckdaten des LHC 2.2.1 Luminosität

CERN

- Luminosität 2 x 10³³ 1 x 10³⁴ cm⁻²s⁻¹
 - Definition:

$$L = \frac{1}{4\pi} \frac{f N_1 N_2}{\sigma_x \sigma_y}$$

Mit σ_i = Strahldimension ; N_i =Teilchenanzahl pro Einzelstrahl

Integrierte Luminosität *L* ≈ 30 fb⁻¹ in 2008 [300 fb⁻¹ (in 2014/2015)]

 Allgemein: Anzahl der erwarteten Events f
ür einen gegebenen Prozess N mit geg. Wirkungsquerschnitt σ

$$N = L \cdot \sigma$$

N_{LHC}~10⁹ pp-Kollisionen / s (Superposition von 23 Wechselwirkungen pro Bunch-Crossing)

Page 16Dezember-07Christopher BraunScheinseminar Astro- und Teilchenphysik WS 07/08

2.2 Eckdaten des LHC2.2.2 Inbetriebsetzung

- Mai 08: Aufnahme des Strahlbetriebs
- Juli 08: Erste Kollisionen bei 14 TeV

Blick in den Tunnel

Herablassen der letzten Magnetstruktur Scheinseminar Astro- und Teilchenphysik WS 07/08

Page 17

Dezember-07

Christopher Braun

2.2 Eckdaten des LHC 2.2.3 Dipolmagnete

Erlangen-Nürnberg

2.3 Die Experimente am LHC 2.3.1 ATLAS: A Toroidal LHC ApparatuS

2.3.1 ATLAS: A Toroidal LHC ApparatuS Toroid-Magnetstruktur

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Page 20

Dezember-07

Christopher Braun

2.3.1 ATLAS: A Toroidal LHC ApparatuS **Endkappen-Toroid**

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Dezember-07

Christopher Braun

2.3.1 ATLAS: A Toroidal LHC ApparatuS Myonendetektoren

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Page 22

Christopher Braun

2.3 Die Experimente am LHC 2.3.1 ATLAS: A Toroidal LHC ApparatuS

Friedrich-Alexander-Universität

Erlangen-Nürnberg

ATLAS Kenndaten:

Gesamtgewicht [Tonnen]: 7000

Länge [m]: 46

Durchmesser [m]: 22

Magnetfeld [T]: 2 - 0.6

Gespeicherte Energie [MJ]: 1300

Strom [kA]: 48

ATLAS Silizium-Streifen und -Pixel: 106 Millionen Kanäle

2.3 Die Experimente am LHC 2.3.2 CMS: Compact Muon Solenoid

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Christopher Braun

2.3.2 CMS: Compact Muon Solenoid Eisenjoch (rot) teils mit Myonendetektoren

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Page 25

Dezember-07

Christopher Braun

2.3.2 CMS: Compact Muon Solenoid Hadronenkalorimeter

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Page 26

Dezember-07

Christopher Braun

2.3.2 CMS: Compact Muon Solenoid Myonenendkappe

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Page 27

Christopher Braun

2.3 Die Experimente am LHC 2.3.2 CMS: Compact Muon Solenoid

Friedrich-Alexander-Universität

CMS Kenndaten:

Gesamtgewicht [Tonnen]: 12500

Länge [m]: 22

Durchmesser [m]: 15

Magnetfeld [T]: 4

Gespeicherte Energie [MJ]: 2700

Strom [kA]: 19.5

CMS Silizium-Streifen "Tracker": 200 m² Si, 9.6 Millionen Kanäle

2.3 Die Experimente am LHC2.3.3 Größenvergleich ATLAS vs. CMS

Page 29

Christopher Braun

3 Nachweis des Higgs-Bosons

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Page 30

3 Nachweis des Higgs-Bosons 3.1 Erwartete Ereignisraten für den LHC

3 Nachweis des Higgs-Bosons3.2 Bisherige experimentelle Suche

Friedrich-Alexander-Universität Erlangen-Nürnberg

Was wissen wir bis jetzt?

 Higgs-Boson wird benötig um Teilchenmasse im SM zu erzeugen (vorher Masse per Hand hinzugefügt)

Keine direkte Voraussage f ür die Higgs-Masse aus der Theorie, außer einer Obergrenze von 1 TeV

- Untere experimentelle Grenze
 114.4 GeV (LEP)
- Ober experimentelle Grenze aus Messungen der elektroschwachen WW (Stand Juli 2007)

$m_{H} = 80 (+36) (-26) \text{ GeV/c}^{2}$ $m_{H} < 144 \text{ GeV/c}^{2} (95 \% \text{ CL})$

Theo. Auffindwahrscheinlichkeit als Funktion der Masse Scheinseminar Astro- und Teilchenphysik WS 07/08

Page 32

Christopher Braun

3.3 Higgs-Produktion am LHC 3.3.1 Kanäle zu Erzeugung des Higgs-Bosons

(i) Gluonfusion

(ii) Vektorbosonfusion (VBF)

Friedrich-Alexander-Universität

Erlangen-Nürnberg

 $qq \rightarrow Hqq$

(iii) Begleitende Produktion (W/Z, tt): Bremsstrahlung, tt-Fusion

3.3 Higgs-Produktion am LHC 3.3.2 Wirkungsquerschnitte der Higgs-Produktion

Friedrich-Alexander-Universität

Wirkungsquerschnitt und Ereignisrate der Higgs-Produktion als Funktion der Higgs-Masse

3.3 Higgs-Produktion am LHC 3.3.3 Signalsignifikanz

Friedrich-Alexander-Universität

Wann kann man bei einem Ereignis von einer Entdeckung sprechen? Annahme: neues Teilchen H produziert; H zerfällt in 2 Photonen: $H \rightarrow \gamma \gamma$

Signalsignifikanz:

$$S = \frac{N s}{\sqrt{N B}}$$

 $N_{\rm S}$ = Anzahlzahl der Ereignissignale im Peakbereich $N_{\rm B}$ = Anzahl der Hintergrundsignale im Peakbereich

 $\sqrt{N_B}$ = Fehler der Hintergrundsignale für große Werte

S > 5: Das Signal ist 5x größer, als der Fehler des Hintergrunds. Wahrscheinlichkeit, dass das Hintergrundsignal mehr als 5σ variiert: $10^{-7} \Rightarrow$ Entdeckung (Konvention)

Page 35Dezember-07Christopher BraunScheinseminar Astro- und Teilchenphysik WS 07/08

3 Nachweis des Higgs-Bosons am LHC 3.4 Zerfall des Higgs-Bosons

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Kopplungskonstanten:

$$g_{ffH} = \left(\sqrt{2}G_F\right)^{1/2} m_f = \frac{m_f}{\nu}$$
$$g_{VVH} = 2\left(\sqrt{2}G_F\right)^{1/2} M_V^2 = \frac{2M_V^2}{\nu}$$

f = Fermion, Quark V = Vektorboson W[±], Z

Page 36

Dezember-07

Zerfallsbreiten Γ für das Higgs-Boson:

$$\begin{split} \Gamma(H \to f \,\overline{f}) &= \frac{G_F m_f^2 M_H}{4\pi\sqrt{2}} N_C (1 - \rho_f)^{3/2} \\ \Gamma(H \to WW) &= \frac{G_F M_H^3}{8\pi\sqrt{2}} \left(1 - \rho_W + \frac{3}{4} \rho_W^2\right) \sqrt{1 - \rho_W} \\ \Gamma(H \to ZZ) &= \frac{G_F M_H^3}{16\pi\sqrt{2}} \left(1 - \rho_Z + \frac{3}{4} \rho_Z^2\right) \sqrt{1 - \rho_Z} \\ \Gamma(H \to \gamma\gamma) &= \frac{G_F \alpha^2 M_H^3}{128\pi^3\sqrt{2}} \left(\frac{4}{3} N_C e_t^2 - 7\right)^2 \\ mit : N_C &= Farbfaktor ; \rho_i = \frac{4m_i^2}{M_H^2} \quad i = q, l, W, Z \\ G_F &= 1,16639 \cdot 10^{-5} GeV^{-2} ; e_t = \frac{2}{3}e \end{split}$$

Christopher Braun

3 Nachweis des Higgs-Bosons am LHC 3.4 Zerfall des Higgs-Bosons

Friedrich-Alexander-Universität

Erlangen-Nürnberg

 Kopplungsstärken beim Zerfall des Higgs-Teilchens sind proportional zur Masse der entstandenen Teilchen!

Verzweigungsverhältnisse (BR: branching ratios) für den Zerfall des Higgs-Bosons als Funktion der Higgs-Masse.

\Rightarrow Bevorzugt zerfällt das Higgs-Teilchen in die schwersten, kinematisch erlaubten Teilchen

Page 37

Dezember-07

Christopher Braun

3 Nachweis des Higgs-Bosons am LHC 3.4 Zerfall des Higgs-Bosons

Die 3 wichtigsten Zerfallskanäle des Higgs-Teilchens:

 $\begin{array}{l} H \rightarrow \gamma \gamma \\ H \rightarrow ZZ \rightarrow 4\ell \\ H \rightarrow WW \rightarrow 2\ell 2\nu \end{array}$

- Niedrige Masse (m_H<2m_Z):
 - bb-Kanal dominant, jedoch zu hoher QCD-Hintergrund
 - Besser geeignet: γγ- und WW-Kanal
- Hohe Masse (m_H>2M_Z)
 - ZZ-Kanal
 - Zusätzlich WW-Kanal

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Gesamte Zerfallsbreite des Higgs-Bosons

Christopher Braun

3.5 Zerfallskanäle 3.5.1 H $\rightarrow \gamma\gamma$

 Signal:
 σ x B.R. ≈ 99 fb (42 fb) für m_H ≈ 115 GeV/c² (m_H = 150 GeV/c²)

Friedrich-Alexander-Universität

Erlangen-Nürnberg

- Hintergrund:
 - γγ: nicht reduzierbar
 - $\sigma_{\gamma\gamma} \approx 80 \text{ pb} / \text{GeV}$
 - γj+jj: reduzierbar
 - $\sigma_{\gamma j+jj} \approx 10^6 \sigma_{\gamma \gamma}$ j (jet) $\rightarrow \pi^0 + X$; $\pi^0 \rightarrow \gamma \gamma$

Man benötigt hohe Photonennachweiseffizienz und präzise Trennung von γ / jet und γ / π^0 -Events \Rightarrow Höchste Anforderungen an die e.m. Kalorimeter!

Page 39

Dezember-07

Christopher Braun

3.5 Zerfallskanäle 3.5.1 H $\rightarrow \gamma \gamma$

Simulation für den H $\rightarrow \gamma\gamma$ in ATLAS und CMS

- Verhältnis Signal / Hintergrund ~ 4%
- Hintergrund kann mit Hilfe von Seitenbänder unterdrückt werden
- Unterschiedliche Stärken der Detektoren
 - ATLAS: Photonenidentifikation, Winkelauflösung
 - CMS: Energieauflösung
- \Rightarrow Entdeckungspotential für 100 GeV/c² < m_H < 150 GeV/c²

Page 40

Christopher Braun

Scheinseminar Astro- und Teilchenphysik WS 07/08

Friedrich-Alexander-Universität

Erlangen-Nürnberg

3.5 Zerfallskanäle 3.5.1 H $\rightarrow \gamma \gamma$

Friedrich-Alexander-Universität Erlangen-Nürnberg

Page 41

Christopher Braun

3.5 Zerfallskanäle 3.5.2 H \rightarrow ZZ $\rightarrow \ell \ell \ell \ell \ell$

- Signal:
 - σ × B.R. = 13 fb (24 fb) für m_H = 150 GeV/c² (m_H = 200 GeV/c²)

$$H - - - \sum_{\substack{l \\ z \\ \bar{l}_{2} \\ \bar{l}_{3} \\ \bar{l}_{4}}}^{l_{1}}$$

$$\begin{split} & \mathsf{E}_{\mathsf{Kin}}(1,2) > 20 \; \mathsf{GeV} \\ & \mathsf{E}_{\mathsf{Kin}}(3,4) > 7 \; \; \mathsf{GeV} \\ & |\eta| < 2.5 \\ & \mathsf{isolierte \ Leptonen} \end{split}$$

Friedrich-Alexander-Universität

Erlangen-Nürnberg

- Hintergrund: $\sigma \times B.R. \approx 1.14 \text{ pb}$
 - Nicht reduzierbar qq → ZZ → ℓℓℓℓ Masse der ZZ kann rekonstruiert werden!
 - Reduzierbar $gg \rightarrow Z bb \rightarrow \ell\ell bb \rightarrow \ell\ell c\ell\nu c\ell\nu$ $tt \rightarrow Wb Wb \rightarrow \ell\nu c\ell\nu \ell\nu c\ell\nu$ Nicht isolierte Leptonen!

3.5 Zerfallskanäle 3.5.2 H $\rightarrow \ell \ell \ell \ell \ell$

Friedrich-Alexander-Universität Erlangen-Nürnberg

- Wichtig ist eine präzise Identifikation und Energieauflösung für Elektronen und Myonen (für m_H =130 GeV/c² Δ E= 1.5 - 2 GeV)
- Mögliche Endzustände:
 - 4e: e⁺e⁻ e⁺e⁻
 - 2e 2μ: e⁺e⁻ μ⁺μ⁻
 - 4μ (Golden Mode): μ⁺μ⁻ μ⁺μ⁻
- Dominanter Hintergrund nach Unterdrückung: ZZ-Kontinuum

Signifikanzdiagramm für den Zerfallskanal H $\rightarrow ee_{\mu\mu}$

\Rightarrow Entdeckungspotential für 130 GeV/c² < m_H < 600 GeV/c²

Page 43

Christopher Braun

3.5 Zerfallskanäle 3.5.2 H $\rightarrow \ell\ell\ell\ell\ell$

Erlangen-Nürnberg

Higgs in 4 μ : ,The Golden mode' Simulation in CMS

Page 44

Dezember-07

Christopher Braun

3.5 Zerfallskanäle 3.5.2 H $\rightarrow \ell\ell\ell\ell\ell$

Friedrich-Alexander-Universität

Erlangen-Nürnberg

... und CMS

Simulation einer Higgs-Events in ATLAS: $H \to ZZ \to \ e^+e^- \ \mu^+\mu^-$

Page 45

3.5 Zerfallskanäle 3.5.3 H \rightarrow WW \rightarrow $2\ell 2\nu$

- Signal
 - σ x B.R. = 2.5 pb (m_H=160 GeV/c²)
 - 2 vorwärts gerichtete hadronische Jets
 - geringe Jet-Aktivität in der
 Zentralregion = Higgs-Zerfallsprodukte
 - \blacksquare kein Massen-Peak aufgrund der 2 ν
- Hintergrund
 - σ×B.R.≈ 105 pb

 $qq \rightarrow tt \rightarrow Wb Wb \rightarrow 2\ell 2\nu bb (Jet-Veto)$

- $qq \rightarrow tWb \rightarrow Wb Wb \rightarrow 2\ell \ 2\nu bb \ (Jet-Veto)$
- $qq \rightarrow WW \rightarrow 2\ell \ 2\nu \ (Spinkorrelation)$

 $gg \to WW \to 2\ell~2\nu$ (Spinkorrelation)

events $H \rightarrow WW^* \rightarrow 2e_{2v}, m_u=140 \text{ GeV}$ Signal + backgrounds 45 CMS full simulation L=10 fb⁻¹ WW continuum Number of expected Wt(b) 77+7W Z+jets(Famos) 30 25 20 60 80 100 120 140 160 180 200 G. Davatz et al. WW transverse mass (GeV/c²)

 $\begin{array}{c} q \ Jet \\ q \ OOOO \\ q \ Jet \\ q \ Jet \\ \end{array} \xrightarrow{W^+} e^+ \\ V \end{array}$

Friedrich-Alexander-Universität

Erlangen-Nürnberg

3.5 Zerfallskanäle 3.5.3 H $\rightarrow 2\ell 2\nu$

Unterdrückung des Hintergrunds durch:

 Beispiel f
ür Jet-Veto-Mechanismus (tt, tWb): Jets aus q in Vorwärtsrichtung und Zerfallsprodukte des Higgs in der Zentralregion → Higgs-Event

Friedrich-Alexander-Universität

Erlangen-Nürnberg

• Öffnungswinkel zwischen den Leptonen (Φ_{\parallel}) für das Signal (blau) und den WW-Hintergrund (schwarz)

 Spinkorrelation → Spin der Signal-Leptonen ist antiparallel

\Rightarrow Entdeckungspotential für den Bereich: m_H ~ 160 GeV/c² (B.R. H \rightarrow WW 95%)

Page 47

Dezember-07

Christopher Braun

3 Nachweis des Higgs-Bosons 3.6 Higgs-Entdeckungswahrscheinlichkeit am LHC

Friedrich-Alexander-Universität

-

Signifikanz der versch. Zerfallskanäle des Higgs-Teilchens für die Detektoren CMS und ATLAS

 \Rightarrow Wenn das Higgs-Boson existiert wird es am LHC entdeckt werden!

Page 48

Dezember-07

Christopher Braun

4 References

- CERN: http://cern.ch
 - ATLAS Collaboration: http://atlas.ch
 - CMS Collaboration: http://cms.cern.ch
 - CERN Summer Student Lecture Programme 2007: http://indico.cern.ch/tools/SSLPdisplay.py?stdate=2007-07-02&nbweeks=7
 - Karl Jakobs, Physics at Hadron Colliders
 - Antonio Pich, The Standard Model
- B.R. Martin, G. Shaw, Particle Physics, second edition
- M. Maggiore, A Modern Introduction to Quantum Field Theory
- C. Berger, Elementarteilchenphysik
- P.W. Higgs, Phys. Rev. Lett. 13 (1964) 16, Phys. Rev. 145 (1966) 4
- A. Schmidt, Discovery Potential for the SM Higgs Boson in the Incl. Search Channels
- S. Rosati, Standard Model Higgs Boson Searches at ATLAS
- L.R. Flores Castillo, SM Higgs searches at LHC
- LHC Design Report, The Main Ring

Page 49

Christopher Braun

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Die Higgs-Suche am LHC

