NLTE Model Atmospheres for Extremely Hot Compact Stars # Thomas Rauch, Jochen L. Deetjen, Stefan Dreizler, Klaus Werner # Institut für Astronomie und Astrophysik, Universität Tübingen, Germany e-mail rauch@astro.uni-tuebingen.de #### **Abstract** Present observational techniques provide stellar spectra with high resolution at a high signal-to-noise ratio over the complete wavelength range — from the far infrared to the X-ray. NLTE effects are particularly important for hot stars, hence the use of reliable NLTE stellar model atmosphere fluxes is required for an adequate spectral analysis. State-of-the-art NLTE model atmospheres include the metalline blanketing of millions of lines of all elements from hydrogen up to the iron-group elements and thus permit precise analyses of extremely hot compact stars, e.g. central stars of planetary nebulae, PG 1159 stars, white dwarfs, and neutron stars. Their careful spectroscopic study is of great interest in several branches of modern astrophysics, e.g. stellar and galactic evolution, and interstellar matter. #### Introduction During their evolution the more massive post-AGB stars can reach extremely high effective temperatures: Up to about 700 kK are predicted by Paczynski (1970) for a 1.2 M_{\odot} star. Due to their flux maximum in the EUV/X-ray wavelength range and depending on their photospheric composition and interstellar absorption some post-AGB stars have been detected as supersoft X-ray sources, e.g. all PG 1159 stars with $T_{\rm eff} > 140 \ \rm kK$ have been detected by ROSAT (Fig. 1). Realistic modeling of the emergent fluxes of these stars requires the consideration of all elements from hydrogen up to the iron group. ## **NLTE Model Atmospheres** - NLTE code PRO2 (Werner 1986, 1988) - plane-parallel - hydrostatic equilibrium - _radiative equilibrium - → H Ca (Rauch 1997, Tab. 1) - -more than 200 levels treated in NLTE - -more than 1000 lines - → iron group (Dreizler & Werner 1993, Deetjen et al. 1999) - millions of lines # **NLTE Model Fluxes on the WWW** A grid ($T_{eff}=50-1\,000\,kK,\,log\,g=5-9$ (cgs), solar and halo abundances) of H – Ca model atmosphere fluxes (Fig. 2) is available at http://astro.uni-tuebingen.de/~ rauch/flux.html Fig. 2 Example of NLTE H - Ca model atmosphere fluxes Fig. 1 Positions of post-AGB stars in the log T_{eff} – log g plane compared to theoretical evolutionary tracks for bornagain post-ABG stars (Blöcker 1995). The tracks are labeled with the respective stellar masses (in M_{\odot}). The red labeled objects have been discovered by ROSAT and have been analyzed by our group #### Impact of light metals (F - Ca) The drastic impact of the light metals (F - Ca) on the emergent flux in the EUV / X-ray wavelength region is shown in Fig. 3 (cf. Rauch 1997). Fig. 3 Comparison of NLTE model atmosphere fluxes with different elemental composition at solar abundances # Iron-group elements (Sc - Ni) A detailed consideration of all line transitions of the irongroup elements, like tabulated in Kurucz (1996), is impossible. Thus, we employed an opacity sampling method in order to calculate their absorption cross sections. Tab. 1 Statistics of the model atoms used in our calculations of the NLTE model atmospheres. The notation is: NLTE = levels treated in NLTE, LTE = LTE levels, RBB = radiative bound-bound transitions | atom
H | ion | NLTE
10 | LTE | RBB
45 | |-----------|----------------|--|---|--| | П | 1 | ĺ | 6 | 45 | | He | 1 | .5 | 21
22 | 8 | | | H
H1 | 10
1 | 22
- | 4Š | | С | Ш | 3551
13551
4551 | 64 | 1 | | | V
V | 5 | 11
28
0 | 6
3
0 | | | VI | ĭ | ő | ŏ | | N | 111 | 1 | 44
91 | 1 | | | V
V | 5 | 15
0 | 1
6
0
3
6 | | _ | VI | 1 | 0 | 0 | | 0 | IV
V | 5 | 7
7 | 3
6 | | | VI | 5 | 7
6
0 | 1 | | F | VII
V | 1
1 | 6 | 1 | | • | VI | 3
3
2
1
4
9
8
10 | 6
4
4 | 1
1 | | | VII
VIII | 2
1 | 4
0 | 1
0 | | Ne | IV | 4 | 6 | 1 | | | V
VI | 9 | 4 | 4 | | | VII | 10 | 15
35 | 9
12 | | NI- | VIII | 1 | 0 | 0 | | Na | IV
V | 4 | 4 | 0
1 | | | VI | 5 | 7 | 1 | | | VII
VIII | 4
5
4
1 | 7
0 | 1
2
0 | | Mg | IV | 1 | 13 | Ō | | | V
VI | 5
4 | 16
4 | 2
1 | | | VII | 5
4
5
1 | 13
16
4
7
0 | į | | ΑI | VIII | 1 | 0
16 | 0 | | Ai | IV
V | 5 | 12 | 3 | | | V
VI
VII | 1
5
5
4
1 | 12
15
3
0 | 3 | | | VIII | 1 | ő | ō | | Si | IV | 1 | 16 | Õ | | | V
VI | 1
4
2
4
1
3
3
2
1
3
6
1
3
3
3
3 | 6
12
1
3
0
9
2
2
0
9
3
2
0
9
3
0
5
5
4
0 | 0
2
1
1
0
0
3
3
1
0
0
2
1
1
0
2
2
1
0
2
1
0
1
0
1
0
1
0 | | | VII | 4 | 3 | 1 | | Р | VIII
V | 1
3 | 9 | 2 | | • | VI | 3 | 2 | 2 | | | VII
VIII | 2
1 | 2 | 1 | | S | VI | 3 | ğ | 2 | | | VII
VIII | 6 | 32 | 4 | | CI | VIII | 3 | 5 | 1 | | | VII | 3 | 5 | 1
2
0 | | | VIII
IX | 1 | Ô | Ó | | Ar | VII | 3 | 17
6
2
0 | | | | VIII
IX | 3
4 | 2 | 2 | | | Х | 1 | Ō | Ō | | K | VII
VIII | 3
4
1
1
4
3
1
1
5
3
3
3
4 | 13
10 | 0
1 | | | IX | 3 | 4 | 2 | | | X
XI | 1
1 | 0 | 0 | | Ca | VII | 5 | 12 | 1 | | | VIII | 3 | 6
17 | 1 | | | X
X | 3 | 12
6
17
9
28 | 2 | | | XI
XII | 4
1 | 28
0 | 1
2
0
0
1
2
0
0
1
1
1
2
2 | | | otal | 225 | 719 | 197 | | | w. | | | | # **NLTE Model Atmospheres for Extremely Hot Compact Stars** Fig. 3 Radiative bound-bound cross-section $\sigma_{4,6}$ (band 6 to band 4) of Fe $_{1}$ V at $n_{e}=10^{16}$ cm $^{-3}$, considered in detail (blue, more than 1 000 000 frequency points within 10^{12} Hz $\leq \nu \leq 10^{17}$ Hz) and with our opacity sampling method (red, about 10 000 frequency points) # Cross-sections of iron-group elements - Cross-Section Creation Package CSC (Deetjen 1999) - → http://astro.uni-tuebingen.de/~ deetjen/csc.html - → line cross-sections - radiative und collisional bound-bound - Kurucz's line lists (1996) - opacity sampling method - → photoionization cross-sections - radiative und collisional bound-free - Opacity Project (Seaton 1994) for Fe The term scheme of the model atom is typically divided into seven energy bands (Haas 1997, Fig. 4) Fig. 4 Energy band structure of an iron-group model atom A sample of iron-group elements can be combined in one generic model atom. The statistics of a typical generic model atom are summarized in Tab. 2 Tab. 2 Summary of a generic Sc-Ni model atom used in our model atmosphere calculations. Numbers in brackets denote individual levels and lines used in the statistical NLTE line-blanketing approach | element ion | NLTE levels | line transitions | |-------------|-------------|------------------| | generic v | 7 (20 437) | 26 (6 042 725) | | VI | 7 (16062) | 26 (4784314) | | VII | 7 (12870) | 26 (2 573 617) | | VIII | 7 (9144) | 28 (3 229 141) | | total | 28 (58513) | 106 (16 656 797) | # Impact of iron-group elements - H-Ca + iron-group model - H-Ca trunk model atom (Tab. 1) - Sc Ni in addition, generic model atom (Tab. 2) - all available (experimental + theoretical) levels + lines The impact of the iron-group elements (Sc - Ni) on the model flux is shown in Fig. 5. Fig. 5 Comparison of two NLTE model atmosphere fluxes without and with (cf. Fig. 3) consideration of iron-grup elements at solar abundances In order to estimate the influence of an improved metal-line blanketing of Ca, we calculated a H-Ca model where we used the opacity sampling method analogously for Ca. The changes are significant and are shown in Fig. 6. Fig. 6 Comparison of NLTE model atmosphere fluxes. Left: a H-Ca model with and without opacity sampling (OS) for Ca, right: H-Ca + iron group model from Fig. 5 with and without OS for Ca ## Conclusions - Emergent fluxes calculated from NLTE model atmospheres which include iron-group line blanketing show a drastic decrease of the flux level at high energies. - For a reliable analysis of extremely hot stars, or the calculation of ionizing spectra from these (e.g. used as input for photoionization models) the consideration of all elements from hydrogen up to the iron group is mandatory. - In the case of H Ca models, a detailed consideration of the metal-line blanketing with all available lines of the light metals has an important influence on the spectrum. # Ongoing and future work PRO2 is permanently updated in order to calculate state-ofthe-art models for the analysis of the available spectra. This includes in the near future - sphericity - diffusion - polarized radiation transfer With this improvements, PRO2 will be an adequate tool to calculate models of e.g. - → neutron stars ## References Blöcker T. 1995, A&A 299, 755 Deetjen J.L. 1999, diploma thesis, University Tübingen Deetjen J.L., Dreizier S., Rauch T., Werner K. 1999, in: White Dwarfs, ed. J.-E.Solheim, The ASP Conference Series, in press Dreizler S., Werner K. 1993, A&A 278, 199 Haas S. 1997, PhD thesis, University Erlangen-Nürnberg Kurucz R.L. 1996, IAU Symp. 176, Kluwer, Dordrecht, p. 52 Ruricz R.L. 1990, IAU Symp. 176, KI Paczynski B. 1970, Acta Astr. 20, 47 Rauch T. 1997, A&A 320, 237 Seaton M.J., Yu Yan, Mihalas D. MNRAS 266, 805 Mihalas D., Pradhan A.K. 1994, Werner K. 1986 A&A 161, 177 Werner K. 1988, A&A 204, 159 # Acknowledgements This research was supported by the DFG under grant We 1312/2-3 and by the DARA/DLR under grants 50 OR 9409 1, 50 OR 9705 4, and 50 OR 9705 5.