NLTE model atmospheres for post-AGB stars

Thomas Rauch, Jochen L. Deetien

Universität Tübingen, Institut für Astronomie und Astrophysil

webingen.de e-mail rauch@astro.url

Introduction

During their evolution post-AGB stars can reach extremely high effective temperatures: Up to about 700 kK are predicted by Paczyriski (1970) for a $1.2~{\rm M}_{\odot}$ star.

Due to their flux maximum in the EUV/X-ray wavelength range and depending on their photospheric composition and interstellar absorption some post-AGB stars have been detected as supersoft X-ray sources, e.g. all PG 1159 stars with $T_{\rm eff} > 140~{\rm kK}$ have been detected by ROSAT. Realistic modeling of the emergent fluxes of these stars requires the consideration of all elements from hydrogen up to the iron group.

- NLTE Model Atmospheres

 NLTE code PRO2 (Werner 1986, 1988)

 plane-parallel

 hydrostatic equilibrium

 radiative equilibrium

 H Ca (Rauch 1997)

 more than 200 lovels to see

-22

- more than 200 levels treated in NLTE
 more than 1 000 lines
 iron group (Dreizler & Werner 1993, Deetjen et al. 1999)
 millions of lines Tab. 1

Impact of light metals (F — Ca)
The drastic impact of the light metals (F — Ca) on the emergent flux in the EUV/X-ray wavelength region is shown in
Fig. 1 (cf. Rauch 1997).

1 Comparison of NLTE mo

NLTE Model Fluxes on the WWW

A grid ($T_{\rm eff}=50-1000\,{\rm kK}$, log g = 5-9 (cgs), solar and halo abundances) of H - Ca model fluxes is available at http://astro.uni-tuebingen.de/ \sim rauch/flux.htm

Iron-group elements (Sc -

A detailed consideration of all line transitions of the iron-group elements, like tabulated in Kurucz (1996), is impossible. Thus, we employed an opacity sampling method in order to calculate their absorption cross sections.

- cross-sections of iron-group elements
 cross-Section Creation Package CSC (Deetjen
 http://astro.uni-tuebingen.de/~ deetj
 line cross-sections
 radiative und collisional bound-bound
 Kurucz's line lists (1996)
 opacity sampling method
 photolonization cross-sections
 radiative und collisional bound-free
 Opacity Project (Seaton 1994) for Fe

- Opacity Project (Seato 1994) for

The term scheme of the model atom is typically divided into seven energy bands (Haas 1997)

A sample of iron-group elements can be combined in one generic model atom. The statistics of a typical generic model atom are summarized in Tab. 1

Tab. 1 Summary of a generic Sc-Ni model atom used in our model atmosphere calculations. Numbers in brackets denote individual levels and lines used in the statistical NLTE line-blanketing approach

element ion	NLTE levels	line tran <mark>s</mark> itions
ge <mark>neri</mark> c v	7 (20 437)	26 (6 042 725)
VI VI	7 (16 062)	26 (4784314)
VII	7 (12 870)	26 (25 <mark>736</mark> 17)
VIII	7 (9 144)	28 (3229141)
total	28 (58513)	106 (16656797)

Impact of iron-group elemer

- H-Ca + iron-group model H-Ca trunk model atom (
- + theoretical) levels +

Fig. 2 Comparison of two NLTE model atmosphere fluxes without and with consideration of iron-grup elements at solar

In order to estimate the influence of an improved metal blanketing of Ca, we calculated a H-Ca model where we the opacity sampling method analogously for Ca. The cha are significant and are shown in Fig. 3.

Fig. 3 Comparison of NLTE model atmosphere fluxes. Left: a H-Ca model with and without opacity sampling (OS) for Ca. right: H-Ca + iron group model from Fig. 2 with and without OS for Ca

Ongoing and future

PRO2 is permanently updated in order to calculate sta the art models for the analysis of the available spectra. includes in the near future

- sphericity

s a decalled line. f. <mark>Figs. 2, 3)</mark> is the WWW at t

References

Deetjen J.L. 1999, diploma thesis, University Tübingen
Deetjen J.L., Dreizler S., Rauch T., Werner K. 1999, in: White
Dwarfs, ed. J.-E. Solheim, The ASP Conference Series
Vol. 169, p. 475
Dreizler S., Werner K. 1993, A&A 278, 199
Haas S. 1997, PhD thesis, University Erlangen-Nürnberg
Kurucz R.L. 1996, IAU Symp. 176, Kluwer, Dordrecht, p. 52
Paczynski B. 1970, Acta Astr. 20, 47
Rauch T. 1997, A&A 320, 237
Rauch T. 1997, A&A 320, 237
Seaton M.J., Yu Yan, Mihalas D., Pradhan A.K. 1994,
MNRAS 266, 805
Werner K. 1986, A&A 161, 177
Werner K. 1988, A&A 204, 159

Acknowledgements

This research was supported by the DARA/DLR under grant 50 OR 9705 5.

15.60 15.65 15.70 15.75 log (ν / Hz)

Poster presented at The Fourth Tetons Conference, "Galactic Structure, Stars and the Interstellar Medium", May 28 - June 1 2000