The origin of helium-rich

Subdwarf O stars

NGC 1851

GALEX (NASA/JPL-Caltech/SSC)

Ralf Napiwotzki University of Hertfordshire/UK

He-sdO stars

- The spectral class of "subdwarf O" stars includes all low mass, evolved stars, hot enough to produce HeII lines
- Mixed bag of stars with widely different parameters and evolutionary history
- Here: restrict to He-sdOs. Hot, helium-rich stars
- typical parameters: $T_{\rm eff}=37000-55000$ K, $\log g=5.5-6,$ $L=20-100 L_{\odot}$
- less well understood than sdBs. Partly, because of problems with modelling the spectra (until recently).
- space density virtually unknown

He-sdO stars

Hot stars: subdwarf B and O stars

Formation of He–sdO stars

- post—sdB stars. H envelope stripped off by weak wind and/or mixing processes (e.g. MacDonald & Arrieta 1994)
- late flashers (Castellani & Castellani 1993; D'Cruz et al. 1996).
 He-flash after the star left the RGB
- Merging of two He core white dwarfs. Ignition of He-burning after the merger (Saio & Jeffery 2000)

SNIa Progenitor surveY

UVES at UT2/Kueyen of VLT

Large programmes 165.H-0588/167.D-0407 SPY consortium: Napiwotzki (PI), Christlieb, Drechsel, Heber, Homeier, Karl, Koester, Leibundgut, Marsh, Moehler, Nelemans, Pauli, Renzini, Reimers, Yungelson

(Bamberg/D, ESO, Kiel/D, Göttinge/D, Hamburg/D, Hertfordshire/UK, Moscow/RUS, Nijmegen/NL, Warwick/UK)

SPY – **ESO SN Ia Progenitor Survey**

SPY project with UVES at the VLT

- high resolution echelle-spectrograph
- mounted at 8 m UT2 of ESO VLT
- 2" slit \Rightarrow resolution at $H_{\alpha} \leq$ 0.3 Å
- observations of more than 1000 WDs
- we took two spectra in different nights

```
Typical accuracy of \Delta RV: \approx 2 \text{ km/s}
```

```
Systematic errors: \sigma(RV) \leq 0.7 \text{ km/s} (telluric lines)
```

SPY sample of sdBs and sdOs

- The aim of SPY is the check of the double degenerate (DD) scenario for progenitors of supernova type Ia
- In the DD scenario two white dwarfs in a close binary merger due to orbital decay caused by gravitational wave radiation
- A total of **1014** white dwarf candidates was observed

SPY sample "contaminated" by 78 sdBs and 33 He-sdOs

Temperature & gravity

Stroeer et al. (2007)

Abundances

Abundance classification:

class		N
С	C lines present	11
Ν	N lines present	13
C&N	C and N lines present	9
0	neither	0

Stroeer et al. (2007)

Radial velocity measurements

he1135m1134_b_2001_07_24T23_42_01_all.norm_ncorr

he1251p0159_b_2003_01_17T08_22_29_all.norm_ncorr

Binary sdBs and sdOs

Subdwarf B stars:

Maxted et al. (2001): $\approx 70\%$

Napiwotzki et al. (2004): $\approx 40\%$

Subdwarf O stars:

33 He-sdOs of which are

1 He-sdO +G/F companion

1 only one spectrum taken

31 He-sdOs checked

1 RV variable binary sdO = 3%

Note: the He-sdO binary is double lined and consists of **two He-sdOs** (Lisker et al. 2004). Another He-sdO+He-sdO binary known (Ahmad & Jeffery).

Corrections for detection efficiency

Corrections for detection efficiency

sdO 0.5 M_{\odot} + 0.2 M_{\odot}			
	observed	efficiency	corrected
Gaussian	3%	89%	3%
Flat	3%	88%	3%
sdO 0.5 M_{\odot} + 0.6 M_{\odot}			
	observed	efficiency	corrected
Gaussian	3%	94%	3%
Flat	3%	94%	3%

Binary sdBs and sdOs

Subdwarf B stars:

Maxted et al. (2001): $\approx 70\%$

Napiwotzki et al. (2004): $\approx 40\%$

Subdwarf O stars:

33 He-sdOs of which are

1 He-sdO +G/F companion

1 only one spectrum taken

31 He-sdOs checked

1 RV variable binary sdO = 3%

Note: the He-sdO binary is double lined and consists of **two He-sdOs** (Lisker et al. 2004). Another He-sdO+He-sdO binary known (Ahmad & Jeffery). (Philipp Podsiadlowski: double-core envelope ejection of $\approx 5M_{\odot} + 5M_{\odot}$ binary)

Kinematic classification

Kinematic classification – thin disk, thick disk, halo. Criteria

- *z*-extend of orbit
- eccentricity
- angular momentum

Classification of sdB and sdO stars from SPY

Subdwarf B thin disk thick disk halo	stars: 54% 31% 15%	38–82% 21–46% 7–26%
He-sdO: thin disk thick disk halo	32% 39% 29%	

Large error limits. Classification of individual He-sdO stars often uncertain.

```
(Richter et al. 2006)
```

Simulated He-sdO population

- Based on Besançon structure model of the Milky Way (Robin, et al. 2003)
- Local white dwarf density $\rho = 5.0 \cdot 10^{-3} \text{pc}^{-3}$ (Holberg, Oswalt, & Sion 2002)
- Relative density of thin disk, thick disk, halo white dwarfs based on kinematic analysis of the SPY white dwarf sample (Pauli et al. 2003; Pauli et al. 2006)
- Two alternative hypotheses for the He-sdO space density
 - proportional white dwarf densities (\approx merging)
 - stars are He-sdOs for first 100 Myr after leaving RGB/AGB (≈late He-flashers)

Simulated He-sdO population

• thin disk • thick disk • halo population

Simulated He-sdO population

Simplest case: 1000 stars selected from a small volume, i.e. no variation of densities – clear-cut classification.

	thin d.	thick d.	halo
probability	50%	20%	30%
N	500	200	300

Observed numbers should correspond to the **relative densities predicted** in the volume by the model population.

If not, the model has to be adjusted to get a **self consistent solution**.

Less simple case: 1000 stars selected from a small volume, i.e. no variation of densities – only probabilities p_i for individual stars.

 $N \longrightarrow \sum p_i$

	thin d.	thick d.	halo
probability p	50%	20%	30%
$\sum p_i$	500	200	300

The probabilities p_i depend on the predicted model densities. Iteration is necessary.

More realistic case: each star is selected from a different volume with different relative densities.

$$N_{\text{pop}} \longrightarrow \sum \frac{N_{\text{pop}}}{N_{\text{total}}}$$

Same reasoning as before, but for each star individual densities and probabilities have to be computed.

Again, the probabilities p_i depend on the predicted model densities. Iteration is necessary.

For the self-consistent solution for each population should

$$\sum p_i^{\rm thin/thick/halo} = \sum \frac{N_{\rm thin/thick/halo}}{N_{\rm total}}$$

(1)

Result for the SPY sample

- thin disk 12.6
- thick disk 12.1
- halo 6.3

He-sdOs are produced by all stellar populations.

What didn't produce clear results so far: distinction between "merger" and "late He-flash" scenario" via population synthesis.

Halo population appears to be less productive by factor 2...3.

Origin of He-sdOs

- Very low binary frequency (lower than in C/O white dwarfs)
- \Rightarrow He-sdO are *not* the progeny of sdBs!
- He-sdOs are produced by all galactic populations
- Merging low mass white dwarfs appear to be a promising explanation
- Abundance classes C vs. N could point to different mixing processes during the merging.
- Formation channel for He-sdO + He-sdO binaries very different from single He-sdOs. He-sdOs in these systems likely not representative for "normal", single He-sdOs.