PROMPT:

An effective tool for studies of pulsating stars

Brad N. Barlow

Graduate Student
Department of Physics & Astronomy
University of North Carolina - Chapel Hill

K. Ivarsen, M. Nysewander

Fortnightly Fluctuations in the O-C Diagram of CS 1246

Brad N. Barlow

Graduate Student
Department of Physics & Astronomy
University of North Carolina - Chapel Hill

The Tools at UNC-Chapel Hill

SOAR Telescope

- 4.1-m aperture
- Cerro Pachon, Chile

PROMPT (part of SKYNET)

- array of 5 robotic telescopes
- 0.4-m apertures
- Cerro Tololo, Chile
- 100% automated

SKYNET

Skynet sunlight map

SKYNET

PROMPT as a Tool for Studying Pulsators

The PROMPT

Advantages

- great observing site
- 10' x 10' F.O.V.
- multi-color photometry easy
- lots of time available to us

Disadvantages

- small apertures

PROMPT as a Tool for Studying Pulsators

Advantages

- great observing site
- 10' x 10' F.O.V.
- multi-color photometry easy
- lots of time available to us

Disadvantages

- small apertures

PROMPT as a Tool for Studying Pulsators

The PROMPT

Advantages

- great observing site
- 10' x 10' F.O.V.
- multi-color photometry easy
- lots of time available to us

Disadvantages

- small apertures

O-C Diagram Basics

- 'O-C' = 'observed calculated'
- used to measure small differences in arrival times of photons
- same timing method used to find planets around pulsars

$$C = T_o + P_o E$$

- **T_o** time at cycle E=0
- P_o period at T_o
- **E** cycle #

• taken from data

1. Period correct and constant

2. Period wrong but constant

3. Period increasing

Example O-C Diagram: V391 Pegasi

CS 1246 - a rapidly-pulsating sdB (sdBV_r) star

Period 371 seconds
Frequency 2690 uHz
Amplitude 2%
Spherical degree I=0 ?

The O-C Diagram of CS 1246: Week 1

The O-C Diagram of CS 1246: Week 2

The O-C Diagram of CS 1246: Week 2+

The O-C Diagram of CS 1246

Fourier Transform of the O-C Diagram

Period 14.1 days Amplitude 10.7 s

Mean Noise Level: 0.75 s

Fourier Transform of the O-C Diagram

Period 14.1 days

Amplitude 10.7 s

Mean Noise Level: 0.75 s

Fourier Transform of the O-C Diagram

Period 14.1 days Amplitude 10.7 s

Mean Noise Level: 0.75 s

Fitting the O-C Values

$$O - C = \Delta T + \Delta P E + \frac{1}{2} P \dot{P} E^2 + A \sin \left(\frac{2\pi E}{\Pi} + \phi \right)$$

Pulsation

Period (P)...... 371.691692 s **P-dot** (P)..... 1.8 x 10⁻¹¹

Phase Oscillation

(Upper) Limit on P-dot

$$\dot{P} = -(1.8 \pm 0.3) \times 10^{-11}$$

(I second in 1768 years)

CS 1246 is contracting Helium in core almost depleted

(Upper) Limit on P-dot

 $\dot{P} = -(1.8 \pm 0.3) \times 10^{-11}$

(I second in 1768 years)

CS 1246 is contracting Helium in core almost depleted

Charpinet et al. (2002)

The O-C Diagram of CS 1246

The phase-folded O-C diagram

highly-elliptical?

or not?

Note: data plotted twice for visualization purposes

System Parameters

Param	Value	Error	Units	Comment
П К	14.105 16.6	$\pm 0.011 \\ \pm 0.6$	$_{ m km~s}^{ m days}$	orbital period RV semi-amplitude a
$f \ \epsilon \ \phi$	0.0066 0.045 185	$\pm 0.0007 \\ \pm 0.019 \\ \pm 20$	${ m M}_{\odot}$ degrees	mass function orbital eccentricity orbital periastron angle
a	0.0910 0.0963	± 0.0003 ± 0.0003	AU AU	separation distance ^{b} separation distance ^{c}
$m \sin i$	$0.115 \\ 0.129$	$\pm 0.005 \\ \pm 0.005$	$M_{\bigodot} \ M_{\bigodot}$	minimum companion mass^{bd} minimum companion mass^{cd}

 $[^]a$ circular orbit approximation

 $[^]b{\rm assuming}$ an sdB mass of 0.39 ${\rm M}_{\bigodot}$

 $[^]c{\rm assuming}$ the canonical sdB mass of 0.47 ${\rm M}_{\bigodot}$

 $[^]d$ assumes no error bar on the sdB mass

What is the companion?

- $m \sin i = 0.12 M_{sun}$
- 95% probability $m < 0.45 M_{sun}$
- no optical signature of companion

Scale System Model

M-dwarf or white dwarf?

Known RV semi-amplitudes of sdB binary systems

Potential Sampling Effects

All light curves from 2010

19 randomly-selected light curves

8 light curves, chosen specifically to mimic P-dot

Summary & Future Work

- used O-C diagram to measure:
 - orbital reflex motion
 - P-dot
- P-dot implies CS 1246 near core He-exhaustion
- phase oscillation implies unseen companion
 - -M-dwarf or white dwarf

- continue collecting O-C data
- obtain RV measurements, compare to O-C results

Expansion of SKYNET

One man's trash...

CS 1246 Field

The O-C Diagram of CS 1246

Fortnightly Fluctuations in the O-C Diagram of CS 1246

Brad N. Barlow

Graduate Student
Department of Physics & Astronomy
University of North Carolina - Chapel Hill

