

The DODO Survey: Imaging Planets Around White Dwarfs

Emma Hogan, Gemini Observatory

Matt Burleigh, University of Leicester Fraser Clarke, University of Oxford

[Hogan et al, 2009, MNRAS, 396, 2074]

Planets around WDs?

Imaging Planets

Reason 1: Contrast

Reason 2: Resolution

Reason 2: Resolution

Reason 2: Resolution

Why Planets Around WDs?

- Spectroscopy of cool, low mass objects
- Constraints on evolutionary models
- Age of system can be determined without the use of models:
 - white dwarf cooling age
 - mass and lifetime of main sequence progenitor
- Provides model-free benchmark estimates of planetary masses

DODO?

Degenerate Objects around Degenerate Objects

The DODO Survey

Gemini North + NIRIwide field of view

Gemini South + FLAMINGOS

white dwarfs within 20 pc

directly imaging extrasolar planets

white dwarfs younger than + Gyr

white dwarfs younger than + Gyr

companions in wide orbits

common proper motion companions

multi-epoch observations

survey began in 2002

wordle from http://www.wordle.net/

Total age = main sequence lifetime + white dwarf cooling age

Models

• IFMR (Dobbie et al., 2006):

$$> M_{WD} = 0.133 M_{MS} + 0.289$$

Main sequence lifetime (Wood, 1992):

$$>$$
 t_{MS} = 10 (M_{MS} / M _{\odot}) ^{-2.5} Gyrs

- White dwarf cooling age (Fontaine et al., 2001)
- 'COND' evolutionary models for cool brown dwarfs and extrasolar planets (Baraffe et al., 2003)

Imaging Planets

- $M_{MS} \sim 1.5 M_{\odot}$
- $M_{WD} = 0.133 M_{MS} + 0.289$

$$\rightarrow$$
 ~ 0.49 M $_{\odot}$

- M_{MS} / M_{WD} ~ 3
- 24 AU → 74 AU
- 38 AU → 117 AU
- 68 AU → 209 AU
- HR8799 is 39.4 pc away

A Candidate?

Emma Hogan, 17th European White Dwarf Workshop, August 16-20, 2010

No Candidate 😊

Another Candidate?

- $M_{WD} \sim 0.7 M_{\odot}$
- $M_{MS} \sim 3.2 M_{\odot}$
- M_{MS} / M_{WD} ~ 4.5
- t_{tot} ~ 1.3 Gyrs
- d ~ 50 pc
- ~ 36" away →
 - r_{WD} ~ 1850 AU
- r_{MS} ~ 400 AU

Perhaps?

Perhaps?

Latest Results

White Dwarf	Туре	Age [Gyrs]	50% M [M _{Jup}]	50% T [K]	WD Orbit [AU]	MS Orbit [AU]
WD0115+159	DQ	1.7	8 ± 1	380	46 - 675	11 - 160
WD0208+396	DAZ	2.6	9 ± 1	360	50 - 758	14 - 138
WD0644+375	DA	2.1	8 ± 1	360	46 - 652	17 - 236
WD1055-072	DC	3.3	9 ± 1	340	36 - 503	8 - 103
WD1134+300	DA	0.37	3 ± 1	350	46 - 664	9 - 127
WD1647+591	DAV	0.91	5 ± 1	350	33 - 372	7 - 77
WD1900+705	DAP	1.1	5 ± 1	350	39 - 452	8 - 89
WD1953-011	DAP	2.1	8 ± 1	360	34 - 509	7 - 111
WD2007-219	DA	1.4	7 ± 1	370	55 - 831	12 - 189
WD2326+049	DAZ	1.1	6 ± 1	370	41 - 396	9 - 89

More Results

More Results

- The DODO survey can detect companions ≥ 500 K around all targets
- \leq 4% of white dwarfs have substellar companions with $T_{\rm eff} \geq$ 500 K between projected physical separations of 60 200 AU (20 45 AU around MS progenitors.)
- ≤ 8% of white dwarfs have companions with masses above the deuterium burning limit (~13 M_{jup})
- ≤ 9% have companions with masses ≥ 10 M_{Jup}

Other surveys

Survey	Targets	Number of targets	Limit (M_{Jup})	Separation (AU)	Frequency of companions (%)
McCarthy & Zuckerman (2004)	G K M	102	>12	75–300	1 ± 1
		178	>30	140-1200	0.7 ± 0.7
			5-10	75-300	<3
Farihi et al. (2005)	White dwarfs	261	>52	100-5000	< 0.5
		86	>21	50-1100	< 0.5
Allen et al. (2007)	M7-L8	132	>52	40-1000	< 2.3
Lafrenière et al. (2007)	FGKM	85	13-40	25-250	< 5.6
Nielsen et al. (2008)	AFGKM	60	>4	20-100	<20

Future Work

- Larger sample size
- Deeper images
- First epoch images for 10 new targets
- Watch this space!