“Ab initio Stellar Astrophysics: Reliable Modeling of Cool White Dwarf Atmospheres”

Piotr Kowalski
Helmholtz Centre Potsdam
German Research Centre for Geosciences (GFZ)
Germany

Mukremin Kilic (Smithsonian Astrophysical Observatory)
George Pavlov (Pennsylvania State Un.)
Outline

White dwarfs atmosphere modeling
- Atmospheres of cool white dwarfs:
- Why *ab initio* modeling is so important?
- our improvements

Performance of the models
- Fits to the SEDs of cool WDs (*including Halo candidates*)
- WD in a binary system with a pulsar

Examples of *ab initio* investigation
- Stability of H\(^-\) in dense helium
- Investigation of the spectroscopic properties of C\(_2\) in dense He (*solving the “peculiar” DQs problem*)
Atmospheres of cool WDs

Important
- Their composition determine the cooling rates and ages at the ends of WDs cooling sequences

Problematic
- H-lines detectable down to $T_{\text{eff}} \sim 5000\,\text{K}$
- He-rich atm. is a fluid, not an ideal gas!

“For simplicity, we have neglected all non-ideal effects, since these effects are poorly understood”

Kilic et al., 2010, ApJS
Why *ab initio* modeling?

Because:

- Development of the QM methods, software and hardware allows for first principle simulations of matter under extreme conditions (*like WDs atmospheres*)

Ab initio models for:

- Non-ideal abundances of species
- Opacity of strongly correlated, fluid media
Our improvements

<table>
<thead>
<tr>
<th>Current state</th>
<th>Our improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiative transfer for planar non-refractive atmosphere</td>
<td>Radiative Transfer Equation in a refractive medium</td>
</tr>
<tr>
<td>Currently, the following species are included: H_2, H, H^+, H_2^+, H_3^+, H^-, He, He_2^+, He^+, HeH^+, e^-, but chemistry is that of ideal gas (except ionization equilibrium of He)</td>
<td>The non-ideal chemical equilibrium abundances of species: H, H_2, H^-, He, He^+, He_2^+, e^-</td>
</tr>
<tr>
<td>Dilute gas photo absorption cross-sections and chemistry</td>
<td>A revision of the most important sources of opacities in helium-rich WD atmospheres: He^- ff, H^- bf</td>
</tr>
<tr>
<td>Flux excess in the model spectra of hydrogen atmosphere white dwarfs</td>
<td>Found the missing absorption mechanism at short wavelengths (Ly(\alpha))</td>
</tr>
<tr>
<td>Unknown nature of “peculiar” DQs</td>
<td>Density induced spectral distortion of C_2 bands</td>
</tr>
</tbody>
</table>
Performance: fits to the SEDs of cool WDs

Majority of cool DC stars have hydrogen rich atmospheres?!
Performance: WDs Halo candidates

Hall et al., 2008, AJ, 136, 76

Kilic et al., 2010, ApJL, 715, L21

![Graph showing synthetic spectra of pure H, pure He, and mixed H/He models](image)

Fig. 5.— Synthetic spectra of pure H, pure He and mixed H/He models, all assuming log g = 8. Fits to all data yield $T_{\text{eff}} \approx 3800$ K for pure H (solid green) and $T_{\text{eff}} = 4381$ K for pure He (solid blue). Fits to optical data only yield $T_{\text{eff}} = 3450$ K for pure H (dotted green) and $T_{\text{eff}} = 3860$ K for pure He (dotted blue). Helium-dominated models with $T_{\text{eff}} = 3500$ K are shown by the red lines, with hydrogen contents as follows: log H/He = −3 (solid), −1 (dash-dotted), −5 (dotted) and −5.5 (dashed).
WD in a binary system with a pulsar

Binary system: pulsar PSR J0437-4715 + WD

- Pulsar points
- $\text{H Ly}\alpha$ line
- H_2 CIA line

Graph details:
- F_λ (erg cm$^{-2}$ s$^{-1}$ Å$^{-1}$) on the y-axis
- λ (Å) on the x-axis
- Two model curves: $T_{\text{eff}}=3800K$, $\log g=7.0$, pure-He in blue, $T_{\text{eff}}=3950K$, $\log g=7.0$, pure H in red

GFZ Helmholtz Centre Potsdam
Pure-H models are reliable. Do we understand He-rich atm. cool WDs?

- The ionization fraction of dense He is highly uncertain, but definitely higher than that of the ideal gas (*our model* (Kowalski et al, PRB, 2007, 76, 075112) consistent with recent data of Celliers et al., 2010, PRL, 104, 184503)

Experimental data on dense H/He needed!

Questions/problems addressed by *ab initio* calculations:

- Is negative hydrogen ion stable in fluid helium?
- Properties of C_2 in dense He – what is the origin of “peculiar” cool DQ stars?
H⁻ in dense helium

Methodology
- DFT (PBE, uspp) + Car-Parrinello quantum molecular dynamics

Conclusions
- H⁻ is stable in dense He – it doesn't ionize up to density of 2g/cm³.
- The ionization energy of negative hydrogen ion increases with density up to ~2g/cm³.
C$_2$ in dense helium – origin of “peculiar” DQs

- DQ stars disappear at T$_{\text{eff}}$ \sim 6000K, “peculiar” DQs were detected at lower T$_{\text{eff}}$
- Initially assigned to a new molecular species: C$_2$H (Schmidt et al., 1995, ApJ)
- Shifts not due to a different species and not constant (Hall & Maxwell 2008)
C$_2$ in dense helium (in DQs)

Photospheric density increases with decreasing the effective temperature; DQ->DQp transition should be a density effect!

Graphs showing:
- Log C/He vs. T_{eff} (K) for different densities.
- ΔT_e (eV) vs. density (ρ (g/cm3)).

$T_e = 2.49$ eV

ω_e is not affected up to density of 0.5 g/cm3
Understanding the spectra of “peculiar” DQs

LHS 290
“peculiar” DQ

$T_{\text{eff}} = 5800 \text{K}$

Kilic et al., 2010: J1442+4013 (DQp), $T_{\text{eff}} = 5737 \text{K}$, H/He = 2.09 10^{-3}
Cool DQ stars

Conclusions
• In cool DQ stars the Swan bands should be blueward shifted
• LHS 290: without H, the modeled density is an order of magnitude larger than the one needed to produce the observed shifts

Solution
• pollution by hydrogen
• incomplete knowledge of helium-rich medium

Kowalski, 2010, submitted
Summary

• Our H-rich models perform very well (good fits including fits to SEDs of the coolest WDs (Halo members) and WD in binary system with Pulsar).

• Helium-rich atmosphere white dwarfs should be explained.

• Ab initio methods valuable for investigation.

• Investigation of H⁻ & C₂ in dense helium: H⁻ is stable (up to 4g/cc) & Swan bands should be shifted to the blue; “Peculiar” DQ WDs most probably DQs showing pressure shifted carbon bands.
Acknowledgments

Collaborators (among others):
Didier Saumon, Mukremin Kilic, Gilles Chabrier, Partick Hall, Sandy Leggett, George Pavlov, Maurizio Salaris, Jay Holberg

For support:
“Ab initio Geomaterials modeling” group at Helmholtz Centre Potsdam
Thanks for your attention!