"Ab initio Stellar Astrophysics: Reliable Modeling of Cool White Dwarf Atmospheres"

Piotr Kowalski Helmholtz Centre Potsdam German Research Centre for Geosciences (GFZ) Germany

Mukremin Kilic (Smithsonian Astrophysical Observatory) George Pavlov (Pennsylvania State Un.)

Outline

White dwarfs atmosphere modeling

- Atmospheres of cool white dwarfs:
- Why *ab initio* modeling is so important?
- our improvements

Performance of the models

- Fits to the SEDs of cool WDs *(including Halo candidates)*
- WD in a binary system with a pulsar

Examples of *ab initio* investigation

- Stability of H⁻ in dense helium
- Investigation of the spectroscopic properties of C₂ in dense He (solving the *"peculiar" DQs problem*)

Atmospheres of cool WDs

Important

• Their composition determine the cooling rates and ages at the ends of WDs cooling sequences

Problematic

- H-lines detectable down to $T_{eff} \sim 5000 K$
- He-rich atm. is a fluid, not an ideal gas!

"For simplicity, we have neglected all non-ideal effects, since these effects are poorly understood"

Kilic et al., 2010, ApJS

Why ab initio modeling?

Because:

• Development of the QM methods, software and hardware allows for first principle simulations of matter under extreme conditions *(like WDs atmospheres)*

Ab initio models for:

- Non-ideal abundances of species
- Opacity of strongly correlated, fluid media

Our improvements

Performance: fits to the SEDs of cool WDs

Majority of cool DC stars have hydrogen rich atmospheres?!

Kilic, Kowalski et al. ApJ 696, 2094 (2009)

Performance: WDs Halo candidates

Hall et al., 2008, AJ, 136, 76

Kilic et al., 2010, ApJL, 715, L21

WD in a binary system with a pulsar

Pure-H models are reliable. Do we understand He-rich atm. cool WDs?

• The ionization fraction of dense He is highly uncertain, but definitely higher than that of the ideal gas *(our model (Kowalski et al, PRB, 2007, 76, 075112) consistent with recent data of Celliers et al., 2010, PRL, 104, 184503)*

Experimental data on dense H/He needed!

Questions/problems addressed by *ab initio* calculations:

- Is negative hydrogen ion stable in fluid helium?
- Properties of C_2 in dense He what is the origin of "peculiar" cool DQ stars?

H⁻ in dense helium

Methodology

• DFT (PBE, uspp) + Car-Parrinello quantum molecular dynamics

Conclusions

- H⁻ is stable in dense He it doesn't ionize up to density of 2g/cm³.
- The ionization energy of negative hydrogen ion increases with density up to $\sim 2g/cm^3$.

C₂ in dense helium – origin of " peculiar" DQs

- DQ stars disappear at T_{eff} ~6000K, "peculiar" DQs were detected at lower T_{eff}
- Initially assigned to a new molecular species: C₂H (Schmidt et al, 1995, ApJ)
- Shifts not due to a different species and not constant (Hall & Maxwell 2008)

C₂ in dense helium (in DQs)

Photospheric density increases with decreasing the effective temperature; DQ->DQp transition should be a density effect!

Understanding the spectra of "peculiar" DQs

Kilic et al., 2010: J1442+4013 (DQp), T_{eff} =5737K, H/He=2.09 10⁻³

Cool DQ stars

Conclusions

- In cool DQ stars the Swan bands should be blueward shifted
- LHS 290: without H, the modeled density is an order of magnitude larger than the one needed to produce the observed shifts

Solution

- pollution by hydrogen
- incomplete knowledge of helium-rich medium

Kowalski, 2010, submitted

Summary

- Our H-rich models perform very well (good fits including fits to SEDs of the coolest WDs (Halo members) and WD in binary system with Pulsar).
- Helium-rich atmosphere white dwarfs should be explained.
- *Ab initio* methods valuable for investigation.
- Investigation of H⁻ & C₂ in dense helium: H⁻ is stable (up to 4g/cc)
 & Swan bands should be shifted to the blue; "Peculiar" DQ WDs most

probably DQs showing pressure shifted carbon bands.

Acknowledgments

Collaborators (among others):

Didier Saumon, Mukremin Kilic, Gilles Chabrier, Partick Hall, Sandy Leggett, George Pavlov, Maurizio Salaris, Jay Holberg

For support:

"Ab initio Geomaterials modeling" group at Helmholtz Centre Potsdam

Thanks for your attention!

