White Dwarfs as Astro Particle Physics Laboratories

J. Isern Institut de Ciències de l'Espai (CSIC-IEEC) Institut d'Estudis Espacials de Catalunya (IEEC)

> <u>Collaborators:</u> S. Catalán (U. Hertfordshire) E. García - Berro (UPC-IEEC) M. Salaris (John Mores Liverpool U.) S. Torres (UPC-IEEC)

17th EuroWD Tübingen, 2010 August 19th

WISPs* *Weakly interacting sub-eV particles	From J. Jaeckel 6th Patras Workshop on AXIONS, WIMPS & WISPS 2010
Coincidences?	
• Neutrino mass	ses: $m_{ m u} \sim { m meV}$
$m_a \approx 0.6 \text{ meV} (10^{10} \text{ GeV/f}_a)$	
• Dark Energy :	scale: $ ho_{\Lambda} \sim ({ m meV})^4$
 Energy densit 	y of the Universe:
	$ ho_{ m today} \sim (m meV)^4$
Some direct(ish) hints for WISP(ish)s WD energy loss, (hidden) CMB, γ-transparency Pamela, DAMA, CoGent	. See Kim & Carosi'10 for a complete review

$$M_{bol} = -2.5 \log L + ctn$$

$$\varepsilon_{a} = 1.08 \cdot 10^{23} \alpha \frac{Z^{2}}{A} T_{7}^{4} F(\Gamma)$$

$$\alpha = \frac{g_{ae}^{2}}{4\pi}$$

$$g_{ze} = 8.5 \cdot 10^{-11} c_{e} \binom{m_{a}}{1eV}$$

$$c_{e} = \frac{\cos^{2} \beta}{3}$$

$$\frac{\dot{\Pi}_{obs}}{\dot{\Pi}_{mod}} \approx \frac{L_{mod} + L_x}{L_{mod}}$$

$$Isern et al 1993$$

$$m_a \cos^2 \beta \approx 8.5 \text{ meV}$$

DFSZ axions Bremmsstrahlung is dominant Nakagawa et al 1987, <u>1988</u>

The best fit is obtained for $m_a cos^2 \beta \sim 5 \text{ meV}$

Observed and predicted secular drift of G117-B15A

Isern et al'10

Future experiments will be aimed to fill the gap (Baker et al'10) Are the WD arguments compelling enough?

White Dwarf Cooling

$$n(L) = \int_{M_l}^{M_U} \Phi(M) \Psi(t_{Gal} - t_{cool} - t_{MS}) \tau_{cool} dM$$

- **1.** n(L) is the observed distribution
- 2. Φ is the IMF, Ψ is the SFR, t_{Gal} is the age of the Galaxy
- 3. T_{cool} is the cooling time, t_{MS} lifetime progenitor, τ_{cool} characteristic cooling time, and hidden there is the IFMR

If the 3 ingredients are reasonably well known, it is possible to use the WDLF to test new physics

<u>Uncertainties:</u>

- Internal structure
- Emission rates
- Transparency of the envelope
- Initial-final mass relationship
- IMF

. . . .

- Pathological SFR
- Ages of MS progenitors
- Metallicities
- Observational systematics

Some exemples:

- Axion [lf, sdp]
- Secular drift of G_N [lf, sdp]
- Magnetic monopoles [lf]
- Neutrino magnetic momentum [lf, sdp]
- •
- •

M_{max} $n(l) \propto \langle au_{cool}
angle$ $\Phi(M)\Psi(\tau)dM$ M_i

Influence of the SFR

If the peak coincides with the normalization (red line) the bright branch falls below the standard

T ₀	Color
0 (no	Black
bump)	dotted
-1	Black
-2	red
-3	Green
-4	Blue

$$\psi = 3, \text{ if } t_0 < t < t_0 + \Delta t$$

$$\psi = 1, \text{ if } t < t_0 \text{ ; } t > t_0 + \Delta t$$

Non normalized LF

SFR, $\Psi = 1$ Burst, $\Delta \Psi = 2$, $\Delta t = 1$ Gyr $t_0 = -1$, -2, -3, -4(black, red, green, blue)

Dotted line : $\Psi = 1$

Dashed line represents the contribution of the burst $(\Psi = 3, \Delta t=1 \text{ at } t_0)$

The luminosity function of massive WD closely follows the LF Irregularities are detectable!

Rocha-Pinto et al'00

Dependence on the IMF

The WDLF is not very dependent on the IMF as far as low mass stars are effectively produced.

Solid: Salpeter; dotted: $\alpha = 0$ Black: $M_{inf} = 0.1$; red $M_{inf} = 1$ We need $M_{inf} > 1 M_0$ to introduce changes

Conclusions:

- # Because of their simplicity, WDs are excellent complementary laboratories for testing new physics.
- # The recent luminosity functions and the measurement of the secular drift of the pulsation period of DAV suggest that WDs cool down more quickly than expected . Axions or light bosons able to couple to electrons could account for this discrepancy.
- # The results seem robust (for the moment) but more refinements are needed:
 - * Observational LF independent from the SDSS
 - (GAIA will be fundamental)
 - * Improvement of the cooling models. Envelope is crucial
 - *