

DOPPLER BEAMING IN THE KEPLER LIGHT CURVES OF KPD 1946+4340 AND KOI 74

UNDER EMBARGO! Steven Bloemen – K.U.Leuven, Belgium 17th European White Dwarf Workshop, 16-20 August 2010, Tübingen

KPD 1946+4340

- \square sdB+WD binary, $P_{orb} = 0.4$ d, eclipsing
- Q1 short cadence Kepler data [KIC 7975824]:
 59s sampling, 33d time span

Spectroscopy of KPD1946

□ Radial velocities [MORALES-RUEDA ET AL. 2003 + 11 new NOT spectra]:

 $K_1 = 164.0 \pm 1.9 \text{ km/s}$

□ Spectroscopy [G. FONTAINE & E. GREEN]:

 $T_{eff} = 34\ 730\ \pm\ 220\ K$

 $\log(g) = 5.43 \pm 0.04$

Doppler beaming in Kepler light curves – Steven Bloemen – 17th European WD Workshop

Modelling the binary LC

- □ LCURVE [TOM MARSH]
- \Box 100 000 grid points on sdB, 3000 on WD
- Adaptive grids (denser strip on sdB during eclipse)

Eclipses + reflection

Eclipses + reflection + ellipsoidal

Eclipses + reflection + ellipsoidal + lensing

Doppler beaming

□ Flux increase/decrease due to velocity of stars in orbit

$$F_{\lambda} = F_{0,\lambda} \left(1 - B \frac{v_r}{c} \right) \qquad \qquad B = 5 + d \ln F_{\lambda} / d \ln \lambda$$

- Expected in Kepler LCs
 [LOEB & GAUDI 2003; ZUCKER ET AL. 2007: 'beaming binaries']
- Detected in long cadence Kepler light curve of KOI 74 [VAN KERKWIJK ET AL. 2010]
- Kepler bandpass photon weighted factor from atmosphere model (depends on assumed metallicity etc.!):

$$\langle B \rangle = \frac{\int \epsilon_{\lambda} \lambda F_{\lambda} B \, d\lambda}{\int \epsilon_{\lambda} \lambda F_{\lambda} \, d\lambda} = 1.30 \pm 0.03$$

(components: aberration +2, photon arrival rate +1, Doppler shift -1.7)

Eclipses + reflection + ellipsoidal + lensing

Eclipses + reflection + ellipsoidal + lensing + beaming

MCMC results for KPD1946

M-R relations for WD (left) and sdB (right)

Doppler beaming in Kepler light curves – Steven Bloemen – 17th European WD Workshop

MCMC results for KPD1946

M-R relations with Eggleton's WD M-R constraint

MCMC results for KPD1946

	Primary (sdB)	Secondary (WD)			
$P_{\rm orb}$ (d)	0.40375026(16)				
q	1.27 ± 0.06				
$i~(\mathrm{deg})$	87.14 ± 0.15				
$R~(\mathrm{R}_{\odot})$	0.212 ± 0.006	0.0137 ± 0.0004			
$M (M_{\odot})$	0.47 ± 0.03	0.59 ± 0.02			
$T_{\rm eff}$ (K)	$34{,}500\pm400$	$15{,}900\pm300$			

sdB parameters	Photometry	Spectroscopy		
K_1 (km/s)	168 ± 4	164.0 ± 1.9		
log(g)	5.452 ± 0.006	5.43 ± 0.04		
v sin(i) (km/s)	26.6 ± 0.8 (assuming corotation)	26.0 ± 1.0 (Geier et al. 2010)		

KOI 74

- Q0+Q1 long cadence Kepler data, 30m sampling, 43 days
- \square P_{orb} = 5.2 d
- ROWE ET AL. 2010: 'A1-star with ^{1.0003}
 unusual transiting companion' ^{1.0000}
- \Box Van Kerkwijk et al. 2010:
 - Low mass WD companion
 - Doppler beaming $\rightarrow K_{1,phot} = 14.7 \pm 1.0 \text{ km/s}$
- □ Hermes@Mercator spectra: → $K_{1,spec} = 15.7 \pm 1.0 \text{ km/s}$ → $v \sin(i) = 164 \pm 9 \text{ km/s}$

Beaming binaries

S. ZUCKER ET AL., 2007, APJ 670, 1326

- Beaming expected in hundreds of Corot & Kepler binary light curves
- □ Weighted *difference* between beaming variability of two stars
- Dominant over ellipsoidal variability and reflection at long enough orbital periods

Primary	Secondary	P = 10 days		P = 100 days			
		Ellipsoidal	Reflection	Beaming	Ellipsoidal	Reflection	Beaming
F0	G0	3.9×10^{-4}	4.8×10^{-4}	6.4×10^{-4}	3.9×10^{-6}	2.2×10^{-5}	2.9×10^{-4}
F0	K0	3.4×10^{-4}	4.1×10^{-4}	$8.3 imes 10^{-4}$	3.4×10^{-6}	1.9×10^{-5}	3.8×10^{-4}
G0	K0	$1.9 imes 10^{-4}$	$2.1 imes 10^{-4}$	$6.6 imes 10^{-4}$	$1.9 imes 10^{-6}$	$9.6 imes 10^{-6}$	3.1×10^{-4}

The Three Periodic Photometric Effects for Sample Binary Configurations

Doppler beaming in Kepler light curves – Steven Bloemen – 17th European WD Workshop

FIG. 1.—The three periodic photometric effects for an F0–K0 binary star in a range of periods.

Summary

KPD 1946+4340

- Modelled superb Kepler short cadence binary light curve using LCURVE
- □ Doppler beaming → photometric RV curve
 [largest source of uncertainty is models, not data]
- Very accurate system parameters, fully consistent with spectroscopic results

KOI 74

- \square Photometric K₁ consistent with spectroscopic K₁
- Modelling complicated by large vsini

Many thanks to my collaborators!

Kepler observations of the beaming binary KPD 1946+4340

S. Bloemen^{1*}, T. R. Marsh², R. H. Østensen¹, S. Charpinet³, G. Fontaine⁴,

- P. Degroote¹, U. Heber⁵, S. D. Kawaler⁶, C. Aerts^{1,7}, E. M. Green⁸, J. Telting⁹,
- P. Brassard⁴, B. T. Gänsicke², G. Handler¹⁰, D. W. Kurtz¹¹, R. Silvotti¹²,
- V. Van Grootel³, J. E. Lindberg^{8,13}, T. Pursimo⁸, P. A. Wilson^{8,14},
- R. L. Gilliland¹⁵, H. Kjeldsen¹⁶, J. Christensen-Dalsgaard¹⁶, W. J. Borucki¹⁷,
- D. Koch¹⁷, J. M. Jenkins¹⁸, T. C. Klaus¹⁹

Under embargo!

