THE ORIGIN OF LOW-MASS WHITE DWARFS

Universidad de Valparaíso

Alberto Rebassa-Mansergas
CHILE

Matthias Schreiber, Boris Gänsicke, Ada Nebot Gómez-Moran, Jonathan Girven

Introduction: the peak at ~ 0.4 Msun

Kepler et al. (2007)
Liebert et al. (2005)
Bragaglia et al. (1995)
Bergeron et al. (1992)

Introduction: PCEBs and wide WDMS binaries

Introduction: theory vs. observations

~50\% of all apparently single low-mass WDs are in binaries (e.g. DDs or unseen companions, Marsh et al. 1995, Sigurdson et al. 2003, Maxted et al. 2002, Schreiber \& Gansicke 2003)
~50\% appear not to have companions (e.g. Maxted et al. 2000, Napiwotzi et al. 2007, Kilic et al. 2010)

Lack of a sufficiently large sample of PCEBs

The PCEB sample

> 2200 WDMS binaries from SDSS (Rebassa-Mansergas et al. 2010, Nebot Gomez-Moran et al. in prep, Rebassa-Mansergas et al. in prep.)

Follow-up observations (RVs)

670 WDMS (Rebassa-Mansergas et al. 2007, 2008, Schreiber et al. 2008, 2010)

78 PCEBs and 133 wide WDMS binaries (211 WDMS in toal)

The mass distributions

Statistically independent with 99.63\% confidence

The mass distributions

Field WDs vs. Wide WDMS : 8.2\%
Field WDs vs. PCEBs : 0.8\%

The mass distributions

Mass distributions of PCEBs and wide WDMS differ significantly
Mass distributions in field WDs and wide WDMS are similar

However......
We have to take into account observational biases

Close binary fractions

Monte Carlo simulations \longrightarrow PCEB detection probability ~ 0.7

Close binary fractions

Monte Carlo simulations

- PCEB detection probability ~ 0.7

Close binary fractions

$$
\begin{array}{ll}
\text { Monte Carlo simulations } & \longrightarrow P C E B \text { detection probability } \sim 0.7 \\
\text { Bayesian statistcis } & \longrightarrow P(D \mid M 2) / P(D \mid M 1) \text { in function of f_a }
\end{array}
$$

The origin of low-mass WDs

Monte Carlo simulations - PCEB detection probability ~ 0.7

Bayesian statistcis $\longrightarrow \mathrm{P}(\mathrm{D} \mid \mathrm{M} 2) / \mathrm{P}(\mathrm{D} \mid \mathrm{M} 1)$ in function of f_a

The origin of low-mass WDs

-89\% of all low-mass ($\mathrm{M}<0.5 \mathrm{Msun}$) WDs are formed in binaries
$\sim 41 \%$ of all high-mass ($\mathrm{M}>0.5 \mathrm{Msun}$) WDs are formed in binaries
-9\% of all wide WDMS contain low-mass WDs
~10\% of all apparently single WDs are of low-mass

Conclusions

WD mass distriutions of PCEBs and wide WDMS are significantly different
WD mass distributions of wide WDMS and field WDs are similar
The large majority ($\sim 89 \%$) of low-mass WDs are formed in binaries
$\sim 9 \%$ of the wide WDMS seem to contain low-mass WDs

The evolution of compact binaries

Valparaiso - Vina del Mar - Santiago de Chile

6-11 March 2011
Sessions:

SOC:

Jarrod Hurley, Australia
Andrew King, UK
Ulich Kolb, UK
Mario Livio, USA
Felix Mirabel, France
Linda Schmidtobreick, ESO
Matthias Schreiber, Chile

Paulina Jirón, ESO
Elena Mason, ESO
Kieran O'Brien, UCSB
Retha Pretorius, ESO
Alberto Rebassa, U. de Valparaíso
Linda Schmidtobreick (chair), ESO
Matthias Schreiber (chair), U. de Valparaiso
Claus Tappert, U. de Valparaiso
Maja Vuckovic, ESO
Mónica Zorotovic, ESO-PUC
Web page: www.eso.org/sci/meetings/Binary Evolution2011/

The origin of low-mass WDs in wide binaries

~9\% of all wide WDMS contain low-mass WDs
~10\% of all apparently single WDs are of low-mass

The origin of low-mass WDs in wide binaries

~9\% of all wide WDMS contain low-mass WDs
$\sim 10 \%$ of all apparently single WDs are of low-mass

Triple systems formed by a DD + M dwarf?

The origin of low-mass WDs in wide binaries

- Merging of two very low-mass WDs (Han et al. 2002)
- Severe mass-loss on the giant branch (Kilic et al. 2007)
- Envelope ejection due to nearby planets (Nelemans \& Tauris 1998)
- SN explotions that blow away the envelope of the companion
(Justham et al. 2009)

P(D|M2)/P(D|M1) $=(f a \wedge N a x$ Пqi) $/$ Прi
 $$
\begin{aligned} & \mathrm{qi}=\mathrm{fa}[1-\mathrm{ei}] \\ & \mathrm{Pi}=1-\mathrm{ei} \end{aligned}
$$

We have 89\% of LMWDs formed in PCEBs, 41\% in HMWDs Our sample is 211 WDMS, 73 LMWDs and 137 HMWDs. So:

73 LMWDs - 89\% of PCEBs $=8$
137 HMWDs -41% of PCEBs $=81$
$8+81=88$
Then $8 / 88=\sim 9 \%$ of all wide WDMS contain LMWDs $81 / 88=-91 \%$ of all wide WDMS contain HMWDs

