## Search for the coolest white dwarfs in the Galaxy

# S. Catalán<sup>1</sup>, R. Napiwotzki<sup>1</sup>, S. Hodgkin<sup>2</sup>, D. Pinfield<sup>1</sup>

<sup>1</sup>University of Hertfordshire, <sup>2</sup>IoA (Cambridge)



EUROWD10 Tübingen, 16/08/2010

### OUTLINE

#### Introduction

Motivation: Initial mass function, WD luminosity function

#### Deep surveys

WFCAM Transit Survey (WTS)

#### Simulations

The thick disc and halo WD population

#### Cool WDs

Colour-colour diagram Reduced proper motion diagram

**Summary** 



#### Initial Mass function

- Distribution of stellar masses at birth
- fundamental property that quantifies the efficiency of the conversion of gas into stars in galaxies
- determination of many physical quantities of stellar populations and galaxies
- Observations of high-redshift galaxies provide a direct view of the earliest phase of star formation in the Universe, but an assumption of the IMF is necessary



A direct test is possible locally in our Milky Way by studying the relic population (halo + thick disc WDs), which were formed at the same age of the Universe as the starbursts observed in high-redshift galaxies



#### WD luminosity function

- Several thin disc WD luminosity functions have been obtained so far
- convolution of IMF, star formation history, initial-final mass relationship and further complications, and are almost impossible to invert

 Thick disc and halo luminosity functions:
 were formed over a short period of time in the early days of our Galaxy
 Interpretation much more straightforward
 But cooler objects, more difficult to detect!



| *Introduction                                                                                                                | WTS Survey                                                                                                                           | Simulations                                          | Cool WDs                 | Summary |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------|---------|
| <ul> <li>SDSS is too</li> <li>Harris et al. (<br/>function componly 35 cool W</li> <li>We are interesthey evolved</li> </ul> | shallow (g' r' ~22)<br>2006), pop. I WD In<br>prising 6,000 WDs f<br>WDs with abs mag ><br>ested in pop. II WDs<br>from the most mas | uminosity<br>from SDSS:<br>> 15<br>S, since<br>ssive | de Gennaro et al. (20    |         |
| We need dee                                                                                                                  | eper observations                                                                                                                    |                                                      | S WD luminosity function |         |



- INT + WFC at la Palma (6 nights awarded)

| Introduction | *WTS Survey | Simulations | Cool WDs | Summary |
|--------------|-------------|-------------|----------|---------|
|              |             |             |          |         |
| WTS fields   |             |             |          |         |

#### Coordinates of the fields

| Field | RA       | DEC       | t   | b               |
|-------|----------|-----------|-----|-----------------|
| 03    | 03:39:01 | +39:13:15 | 155 | <sup>-</sup> 13 |
| 07    | 07:04:34 | 12:56:00  | 203 | 9               |
| 17    | 17:14:00 | +03:44:00 | 25  | 23              |
| 19    | 19:34:04 | +36:29:36 | 70  | 8               |

Fields chosen taking into account:

- Avoid zenith distances < 5 degrees. Fields with DEC >>-20 and -30>>-45

- -|b|>10 to avoid contamination by reddened stars and giants
- Spread in RA, 4 regions towards the Kuiper belt



#### WD population in the WTS fields

Napiwotzki (2008)

- more than 1,500 WDs with  $\mu$ >10mas/yr will be detected in the WTS fields (standard IMF)

- 100 cool WDs with Mv>15 mag (T $_{\rm eff}$  < 5,000 K) most of them thick disc and halo members

| IMF       | N(M <sub>prog</sub> )><br>1.5M <sub>☉</sub> | N(M <sub>prog</sub> )><br>2.0M <sub>☉</sub> | N(M <sub>prog</sub> )><br>4.0M <sub>☉</sub> |
|-----------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Salpeter  | 27                                          | 11                                          | 1                                           |
| Baugh     | 135                                         | 94                                          | 26                                          |
| Kennicutt | 49                                          | 26                                          | 2                                           |

As expected, the predicted number of WDs with massive progenitors is much higher when Baugh IMF is adopted



Simulated WD luminosity function

| Introduction     | WTS Survey       | *Simulations | Cool WDs            | Summary |
|------------------|------------------|--------------|---------------------|---------|
|                  |                  |              |                     |         |
| Reduced pro      | oper motion diag | ram          |                     |         |
| Combination o    | of colours + pm  |              | · · · · · · · · · · |         |
| H <sub>i</sub> = | i + 5 log µ +5   |              |                     |         |

We have checked on the simulations that there is a good distinction of all three populations of WDs redder than r-i=0

- + thin disc
- $\Delta$  thick disc
- halo



rpm diagram for a simulated sample of WDs brighter than 25 and with b~10 and  $\mu{>}10$  mas/yr



(Holberg & Bergeron 2006)



#### **Colour-colour diagrams**

Good  $T_{eff}$ /log g sensitivity for the cool, old WDs produced by massive progenitors ( $T_{eff}$  < 4000K)











50

7.5

Coolest WD candidate found so far, 2900K

Teff (K)

4000

4500

3500

log g > 8.0 in most of the cases

8.5

log g

9.0

9.5

8.0

100

3000



#### WD masses + progenitor masses

We obtain the WD masses using the cooling sequences of Fontaine et al. (2000) for CO core WDs (thick envelope)

 $M_{prog}$  by using the initial-final mass relationships:

Weidemann (2000), Ferrario et al. (2005), Kalirai et al. (2008), Catalán et al. (2008), etc...



| Introduction         | WTS Survey            | Simulations    | *Cool WDs                                                    | Summary       |
|----------------------|-----------------------|----------------|--------------------------------------------------------------|---------------|
| Reduced              | proper motion di      |                | roper motion calculatior                                     | s in progress |
|                      |                       |                | lentify the membership<br>given population we use<br>iagram: | of the WDs to |
| 20<br>20<br>20<br>20 |                       |                | H <sub>r</sub> = r + 5 log µ +                               |               |
| vtan=40              | vtan=150              |                | dopting boundary betwe<br>nd WDs:                            | en subdwarfs  |
| -1                   | 0 1 2<br>g'-i'        | <sup>3</sup> H | r > 2.68(g-i) + 15.21                                        | for g-i<1.6   |
| Reduced p            | proper motion diagram | н              | <sub>r</sub> > 10.0(g-i) + 3.5                               | for g-i>1.6   |

Holberg & Bergeron (2006) models

20 WD candidates in SDSS, we expect to add many more to this list...



### Danke!