DISCOVERY OF THE ECLIPSING DETACHED DOUBLE WHITE DWARF BINARY NLTT 11748

Justin D. R. Steinfadt¹, David L. Kaplan^{2,3}, Avi Shporer^{1,4}, Lars Bildsten^{1,2}, Steve B. Howell⁵

¹ Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106, USA

² Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106, USA ³ Hubble Fellow

⁴ Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive Suite 102, Santa Barbara, CA 93117, USA

⁵ National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA

We report the discovery of the first eclipsing detached double white dwarf (WD) binary, NLTT 11748. In a photometric search for pulsations from this low-mass helium core WD, we discovered approx 180 s 3%-6% dips in the photometry. Subsequent radial velocity measurements found variations with a semi-amplitude $K_1 = 271 \pm 3 \text{ km/s}$ (also now reported by Kawka et al.) and confirmed the dips as eclipses caused by an orbiting WD with a mass $M_2 = 0.648$ -0.771 M_{\odot} for $M_1 = 0.1$ -0.2 M_{\odot} . We detect both the primary and secondary eclipses during the $P_{\text{orb}} = 5.64 \text{ hr}$ orbit and measure the secondary's brightness to be 3.5% $\pm 0.3\%$ of the primary at SDSS-g'. Assuming that the secondary follows the mass-radius relation of a cold C/O WD and including the effects of microlensing in the binary, the primary eclipse yields a primary radius of $R_1 = 0.043$ -0.039 R_{\odot} for $M_1 = 0.1$ -0.2 M_{\odot} , consistent with the theoretically expected values for a helium core WD with a thick, stably burning hydrogen envelope. I will discuss how our future observational efforts, such as detection of the secondary semi-amplitude K_2 , multiband high-cadance photometic eclipse observations, and cross system time-delay measurements, will determine M_1 , yielding accurate WD mass-radius measurement of both components, as well as a clearer indication of the binary's fate once contact is reached.