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Motivation:

e the discovery of far-UV radiation in
“old” elliptical galaxies in 1969 was a
major surprise and has remained one of
their most enduring puzzles

e however, we ‘understand’ the origin of
the dominant population of old blue
objects in the Milky Way:
hot subdwarfs in binary systems

— Can these objects explain the far-UV
excess in elliptical galaxies?
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— need realistic modeling of stars in
external galaxies



The elliptical galaxy NGC 720 (Cetus)
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NGC 720 (Chandra) (Jeltema et al. 2003)

e evidence for a mis-aligned dark
matter halo or recent merger
activity?

e 9 ultraluminous X-ray sources
(Lx > 10%%ergs/s) — relatively young
population?



Schawinski et al. (2007)

Evidence for Recent Star Formation

star formation (< 1%) in the last
1 Gyr
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The Far-UV Excess (UVX) in Elliptical Galaxies
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e discovered in 1969 by the Orbiting
Astronomical Observatory-2 (bulge
of M31; Code 1969)

e not expected in an old population
without recent star formation

e flux rises towards shorter
wavelengths — UV upturn

possible orgin:

e non-thermal radiation from an
AGN: no (UVX not centrally
concentrated)

e young massive stars: no (UVX
smooth, rather than clumpy, no
direct evidence for massive stars
[HST])

— the UVX is caused by a population
of ‘old’, hot stars with T.g ~ 25000 K

Controversy: what is the evolutionary
origin of these hot, old stars?



The Low-Metallicity Model
(e.g. Lee 1994)

e low-metallicity old stars have
blue-horizontal branches — UV
excess

e requires large age for the Universe

(~ 20 Gyr)

but: probably not consistent with the
metallicity distribution of early-type
galaxies (metal-rich!)

e predicts UV X should decreases
rapidly with lookback time

The High-Metallicity Model
(e.g. Bressan et al. 1994; Yi et al. 1997)

e increased mass loss for old stars on the
RGB causes stars to lose their H-rich
envelopes near the tip of the RGB —
extreme horizontal-branch stars that
avoid the AGB

¢ need metallicity-dependent, enhanced
(compared to Reimers) mass loss (M
increases with Z [plausible]) that varies
from star to star (Y?)

e lacks solid physical mechanism for the
enhanced mass loss

e predicts UV X should decrease rapidly
with lookback time and be strongly
dependent on metallicity



The Termination of the AGB and FGB

e What terminates the evolution of stars on
the asymptotic-giant branch (AGB)?

Paczynski & Ziotkowski (1968) (also
Biermann 1938): when the envelope
binding energy of the envelope (including
recombination energy) becomes positive
(i.e. the envelopes become formally
unbound)

Number

e not dynamical ejection (radiative losses),
but by a superwind in a Mira phase (with
M ~ 5 x 107° M, yr ') — rapid mass loss
— planetary nebula

Han, Ph.P., Eggleton (1994): explains the

observed WD mass distribution and the — stars like the Sun may not ascend the
AGB (not presently ruled out)

initial-final mass relation of stars without

adjustable parameters (!) Kaliraj et al. (2007): existence of low-mass
e predicts that at high metallicity (Z < Z.), white dwarfs (M = 0.43 & 0.06 M) in the
low-mass stars (M < 1 M) reach this old (8 Gyr), super-solar ([Fe/H|=0.4)

point already on the first-giant branch open cluster NGC 6791 — avoid AGB?

(FGB)



Hot Subdwarfs in the Milky Way
(Han et al. 2002, 2003)

e hot subdwarfs (sdB stars) are
helium-core-burning stars (with M ~ 0.5 M) that
have lost most of their envelopes by binary
interactions

e prototypical evolution for forming compact
binaries

> stable Roche-lobe overflow

> common-envelope (CE) evolution

> binary mergers

e all channels appear to be important (30 %, 40 %,
30 %; Maxted, Heber, Napiwotzki, Green)

e mass transfer must have started near the tip of
the red-giant branch (helium burning!)

— ideal systems to test/constrain binary
evolution



Stable RLOF Channel

(mass ratio < 1.2 - 1.5)

stable RLOF (near tip of RGB)

wide sdB binary with MS/SG companion

® O

P, = 10 - 500 days

M =030-049M
sdB sun

Common-Envelope Channels

stable RLOF + CE (mass ratio < 1.2 - 1.5) CE only (mass ratio > 1.2 - 1.5)

stable RLOF

Py . wide binary
He WD MS
unstable RLOF ——-> dynamical mass transfer unstable RLOF ——-> dynamical mass transfer

common-envelope phase common-envelope phase

short—period sdB binary with He WD companion short—period sdB binary with MS companion

P =0.1-10days
@ ‘ orb @ .

M s~ 0.4-0.49 M.,
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Galaxy Modelling
(single population)
(Han et al. 2007, MNRAS, 380, 1098)

e standard model is the ‘best’ model
to explain hot subdwarfs in the

Milky Way

e single stars included by default
(‘wide binaries’)

e add spectral library

> hydrogen-rich stars: BaSeL
library (Lejeune 1997, 1998)

> hot subdwarfs: calculated spectra
with ATLAS9 stellar atmosphere
code (Kurucz)

log (f,/erg s Tem ™R

-10

—-11

-12

-13

population age (Gyr)]

0.01
0.05
0.1
0.5
1.0
1.5
5.0
10.0
15.0

10*



Composite Populations

e moderate amounts of recent star
formation (< 1 Gyr) can affect the UV
excess (1550 — V) significantly

e increasing evidence for low-level recent
star formation (Schawinksi, Kaviraj, Yi)

e model:
> dominant old population: tyajor = 9,

12 Gyr

> minor young population with mass

fraction ‘t’ and age tinor

e results:

> degeneracy for tunor > 1 Gyr

> best indicator for young population:
slope of spectrum: f oc FUV (fitted

between 1075 and 1750A)
> degeneracy between E(B — V) and f

> binary contribution important for
most galaxies with UV excess

I (107 ™ ergs tem™? 27}

T T T T T
— f=0, E(B-V)=0; x°=582
____ f=0, E(B-V)=0.05; xP=451
— f=04%, E(B-V)=0;  t_,_=0.37Cyr, X*=431]
t minor=0-47Cyr, X*=395
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NGC 3379 (Brown et al. 1997; HUT)
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The Evolution of the UV Excess

e previous models predict strong evolu-
tion of the UV excess with lookback
time (old population)

e binary model predicts UV excess for
t > 1Gyr

— moderate evolution with redshift (up
to redshift z ~ 2)
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The Metallicity Dependence

e expect weak metallicity dependence

> binary interaction are not a
strong function of metallicity,
unlike stellar winds

but: initial binary properties?

> appearance of hot subdwarfs
depends on metallicity (David
Brown)

> more metal-poor subdwarfs are
more compact and hence hotter

e Burstein et al. (1988): UVX
correlated with metallicity? (from
IUE)

e but consistent with GALEX
observations? (Rich et al.)
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e Galaxy stacking analysis using

(Bootes)

Atlee, Assef & Kochanek (2008)

GALEX deep field survey

— little evolution up to redshift z = 0.6, inconsistent with single-
star model, consistent with binary model
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Binary model Single—star model

(Hon el ol. 2007) (Bruzual & Charlot 2003)
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Conclusions

e a binary model can explain most of the main
properties of the UV excess

e the model relies only on a prior: physics and a
calibration against a known Galactic population

e any complete model for the UV excess has to
include binaries (binaries are not optional!)

e single-star model not ruled out (see Han et al.
1994)

e potential tests:

> the evolution of the UV excess with redshift
> the metallicity dependence of the UV excess

e future work:

> refinement of the model

> detailed comparison with observations using
improved diagnostics

e the inclusion of stars in galaxy modeling has to
take into account the known complexities in our
own galaxy



Elliptical Galaxies

(e.g. Renzini 2006, ARA&A, 44, 141)

e dominated by an old population of stars

e ~ 57% of the mass in stars is found in

elliptical /early-type galaxies

e more than 80 % of mass is found in

massive galaxies (with M 2 3 x 10 M,,)
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Formation Scenarios

e Monolithic Collapse Scenario
(Eggen, Lynden-Bell & Sandage
1962)

> single rapid global starburst
followed by passive evolution

(disk may form subsequently by
accretion of gas from
environment)

e Hierarchical Merging Model
(Toomre 1977; White & Rees 1978)

> spheroids from from mergers of
smaller entities

(disrupting any existing disks)

e modern picture: blurred; evidence
for merging, but also evidence for
rapid initial starburst from [/Fe]
enhancement



The Fundamental Plane

e Early-type galaxies follow both a
tight colour—magnitude relation
(U -V vs. My) and a colour—central
velocity relation ((U — V) vs.

u-v

relation - Eliptical e Te.
L SO ia)
d ﬁ f d l l . h 0~ e Spiral+Im ¢ m
— defines a fundamental plane with 3 » Unclassified o
parameters (e.g. effective radius, e
velocity dispersion, surface My+Slogh
brightness) Coma Cluster Bower et al. (1999; after Renzini)

e suggests a simple, homogeneous

picture for early-type galaxies where
they

> are well-virialized

> have similar homologous 1
structure

> obey tight age and metallicity -
constraints re come
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Bower, Lucey and Ellis (1992; after Renzini)
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e evidence for a mis-aligned dark
matter halo or recent merger
activity?

e 9 ultraluminous X-ray sources
(Lx > 10%%ergs/s) — relatively young
population?



Schawinski et al. (2007)

Evidence for Recent Star Formation
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The Galaxy Downsizing Paradox

e the most massive early-type galaxies form
first and more rapidly than lower-mass

galaxies 0.2 0.5 1 2 3
| I | I
High densily

4]

e e.g. galaxy archaeology

> study the stellar populations of galaxies
in the local Universe to deduce their
star-formation histories in the distant
Universe

> Thomas, Maraston et al. (2005):
massive early-type galaxies have formed
most of their stars by a redshift z=1.5

|

Low density 12.0

dMJdtM. (Gyr ™)
[ 4]

> 50 % of all stars in early-type galaxies
have formed by a redshift z =1

e not expected in the hierarchical merger
model (expect continued mass build-up in
the most massive galaxies — paradox)

Lookback time {Gyr)

e what stops star formation?
p Thomas et al. (2005: from Renzini)

> possibilities: SN feedback in dwarf
galaxies, AGN feedback in massive
galaxies



A Chemical Evolution Paradox?

e facts:

> the most massive early-type galaxies
have super-solar metallicity (~ 2 in Fe;
~ 3 in Mg/0), containing a large
fraction of all stars formed to-date

> present-day star formation occurs
predominantly in small galaxies with low
metallicity (e.g. LMC, Z = 0.5 X solar)

— while the total metal content of the
Universe increases as the Universe ages,
the metallicity in active star-forming
regions may decrease with age (— paradox)

— possible implications for the progenitors of
GRB progenitors, SNe Ia (metallicity
dependence)

22 24 286
log o (km/s)

Thomas et al. (2005)



