Polars
and
Intermediate Polars

Christian Lerrahn
<clerrahn@gmx.de>

November 21, 2002
at IAAT Tubingen

— Typeset by FollTEX —



Polars

=
.,
=
G
0"
E
=

— Typeset by Foll TEX —



Overview - Polars

e Polars

— What is a Polar?
— The Magnetic Field
— Synchronous Rotation of the Primary
— Lightcurves
* Spectra
x Emission
— The Accretion
— The Accretion Region
— Problems with the Model
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What is a Polar?

e subclass of the CVs
e primary is a white dwarf with a strong magnetic field (typically 10-80 MG)

e emission is strongly polarized at optical wavelength (both circularly and
linearly)

® no accretion disc

e primary rotates synchronously

e examples: AM Her, AR UMa, ST LMi, VV Pup
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The Magnetic Field

E?} .
e typical field strength of VWA,
10-80 MG " U
e highest-field system:
230 MG (AR UMa)
e probably dipole fields, possibly Gmwi’u ‘ﬁlﬂﬁf £
J il Ul I

quadrupole fields

Figure 1:  The principle of
cyclotron emission *

e /eeman splitting, cyclotron harmonics, ratio of linear to circular polarization
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Synchronous Rotation

angular momentum of the accretion stream spins up the primary
= short spin periods expected like those of non-magnetic CVs (= 50 s)

actual spin periods of 1-3 hrs!!!

fields will intertwine where they meet and entangle their field lines
= drag force acting as a torque slowing down the primary
= sychronization of the primary

still objects that rotate asynchronously

— braking torque might be low (larger binary separation, weaker field)
— asynchronism might be temporary
(e.g. because of a nova like in V1500 Cyg)
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Lightcurves
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Figure 2: Optical lightcurve of an eclipsing system
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Emission
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Figure 3: Flux emitted from the accretion region
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Emission

e cyclotron emission (CYC) (also see Fig. 1): ionised material spirals around
the field lines because of the Lorentz force F' = ev X B

e bremsstrahlung (BREMS): ionised material is slowed down and emits hard
X-rays

e black-body radiation (BB): bremsstrahlung emitted towards the white dwarf
is reprocessed as a black-body spectrum
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Emission
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Figure 4: Cyclotron humps in spectrum




Accretion

Observation

Figure 5: Accretion on a magnetic white dwarf in a CV
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Accretion
The Simple Model

e accretion on one pole

e accretion stream starts on a ballistic trajectory and is then forced to follow
the field lines

e accreted material forms a shock and an accretion column over the accretion
region of the primary
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Accretion
Problems with the Simple Model
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e ‘reversed soft X-ray mode”: Soal- 4
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red wave-lengths

Figure 6: The “reversed X-ray
problem”
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Accretion
The Solution

e converging field lines squeeze the stream
= 'blobs’ are formed resisting the magnetic pressure longer
= blobs might reach surface avoiding the shock
= released X-rays are thermalised by the atmosphere

e accretion on both poles, most blobs going to only one pole
= soft X-ray emission mainly on one side, hard X-ray mainly on the other

e blobs will reach surface at another point than the 'mist’ of matter
= accretion region is an extended arc
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Accretion

The Accretion Region
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Figure 7: The accretion region
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Overview - Intermediate Polars

e Intermediate Polars

— What is an Intermediate Polar?
— Discless Accretion

— Disc-fed Accretion

— The Accretion Curtain Model

— Propellers
— Sidebands
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What is an Intermediate Polar?

e subclass of the CVs

e primary is a white dwarf with a medium-strength magnetic field (typically
1-10 MG)

e emission is (usually) not polarized
e truncated or no accretion disc
: Pspin ~ 1
e primary does not rotate synchronously ( 5= ~ 15
orbit

e pulsed X-ray emission

e DQ Her, V2400 Oph, EX Hya, V1025 Cen
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Discless Accretion

e blobs are either attracted or repelled
(because of electric currents on their surfaces)

e if attracted, disc is

formed

o if repelled,
matter will
but no disc
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Figure 8: Discless intermediate polar
surrounded by a torus of matter

18



Disc-fed Accretion

® Tmag < Tmin

e outside the magnetosphere W
the matter will form a disc P ™
e intermediate case . :
] x‘x
Teire < T'mag < Tmin ‘\‘\

is pretty much less clear
Teire. circulisation radius

(dotted line in fig. 9) Figure 9: Accretion stream in

Roche lobe

e inside the magnetosphere the stream follows the field lines again
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Disc-fed Accretion

Figure 10: Disc-fed accretion in intermediate polars ( animated )
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The Accretion Curtain Model

e pulsation although poles cancel each other out in emission

o effects of asymmetric magnetic poles or a significant height of the accretion
column too small

e deeper pulsations at lower energies
= absorption effect
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Figure 11: X-ray lightcurve of AO Psc showing 805s-pulsations
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The Accretion Curtain Model

e explained by the accretion
curtain model:

— stream points towards us /
= less X-ray is observed (

— stream points away from us
= more X-ray is observed

T
T
il .lfl"

e problem: double-peaked
pulsations (e.g in EX Hya) /4

Figure 12: Principle of the
accretion curtain model

— Typeset by Foil TEX — 22



Propellers

e primary rotates too
fast (like in Fig. 13)

= energy of the
blobs is increased

= blobs are expelled
and might even
leave the system

Figure 13: Synchronisation is needed... ;-)
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Propellers
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Figure 14: An intermediate polar acting as a propeller
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Sidebands

e very often strong beat-cycle pulsations in optical lightcurves
e produced by interaction of spin and orbital cycles

e bright spot re-illuminated after more than one period

e complicated sidebands are possible

w+ O w+20 w+ 30 ...

or even more complicated if more complex amplitude modulation
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Sidebands
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Figure 15: Fourier transform of the optical lightcurve of FO Aqr
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Useful related links

e Tool to create OpenGL Animations of CVs

e The MSSL Polar Page
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http://www.astro.keele.ac.uk/~apb/OGL_CV/oglcv.html
http://www.mssl.ucl.ac.uk/www_astro/gal/polar.html

