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Abstract

Numerical simulations of the evolution of strange-mode instabilities into the non-linear regime have been performed for a wide range of stellar parameters for Wolf-Rayet
stars. It has been shown that the Wolf-Rayet models reach radial velocities which amount up to 30%of their escape velocity. The acoustic luminosities suggest a connection
to the observed mass loss. Most of the models show a jump in the mean effective temperature after reaching the non-linear regime. This jump is related to the run of the
opacity.

Non-Linear Simulations of Wolf-Rayet stars

Non-linear simulations To determine the fate of unstable stars, the evolution of their instabilities has to be followed
into the non-linear regime by numerical simulations (Grott et al. 2005, MRAS, 360,1532-1544). The evolution
of stellar instabilities and pulsations is followed by solving the equations of mass conservatiuon, momentum
conservation, energy conservation and the diffusion equation for energy transport together with an equation of
state and a prescription for the opacity.

Strange modes in Wolf-Rayet stars Earlier linear stability analyses have shown that strong instabilities with high
growth rates prevail in many types of massive stars. These are associated with so called strange modes
(Gautschy & Glatzel et al. 1990, MRAS, 245,597-613). Models of Wolf-Rayet stars exhibit the strongest
strange mode instabilities (Glatzel et al. MRAS, 262,L7-L11). Thus they are very interesting candidates for a
non-linear stability analysis.

Radial velocity amplitudes The investigated Wolf-Rayet models reach final radial velocity amplitudes in the non-
linear regime of the order of 107cm/s.
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Figure 1: Modulus of the photospheric radial velocity on a logarithmic scale as a function of time for a 13.04M� Wolf-Rayet model with

different initial effective temperatures (120.000K blue, 90.000K green and 60.000K red). The radial photospheric velocity evolves from the

hydrostatic configuration (numerical noise) through a phase of exponential growth (linear regime) into non-linear saturation.

Temperature jumps

Run of the effective temperature The jump of models in the mean effective temperature after reaching the non-
linear regime (see figure 3) is noteworthy. All unstable models show this behaviour. The finally reached mean
effective temperature is entirely independent of mass and largely independent of the initial effective tempera-
ture. There are only two final mean effective temperatures around 30.000K and 15.000K respectively. All models
with an initial effective temperature above ≈ 32.000K jump on a mean effective temperature around 30.000K,
models with initial temperatures below this value jump on a mean effective temperature around 15.000K.
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Figure 3: Effective temperature as a function of time for a 13.04M� model with different initial effective temperatures. Top panel: Models

which jump on a mean effective temperature around 30.000K from different initial effective temperatures (120.000K blue, 90.000K green and

60.000K red). Bottom panel: Models which jump on a mean effective temperature around 15.000K from different initial effective temperatures

(30.000K blue, 25.000K green and 20.000K red).

Acoustic Luminosities and Mass Loss Rates

Acoustic luminosities To investigate a possible connection between stellar instabilities and a pulsationally driven
mass loss, the acoustic energy flux is used. It represents the mechanical energy transferred to the star’s
atmosphere by shock waves (Grott et al. 2005, MRAS, 360,1539). The non-linear simulation provides the time
integrated acoustic luminosity as a non-monotonic function of time. We derive the mean acoustic luminosity
from the mean slope of this function (see figure 2 below).

Mass loss rates With the mean acoustic luminosity it is possible to estimate a mass loss rate. We identify the mean
acoustic luminosity with the “mechanical” energy of the stellar wind given by the relation 1

2Ṁv2
∞ = Lacoustic to

determine the mass loss rate. We emphasize that the acoustic luminosity and thus the mass loss rate depends
strongly on the artificial viscosity which had to be used in the simulations. Since viscosity has a dissipative
effect the derived mass loss rates have to be regarded as lower limits (see table 1).

M [M�] Tinit ial [K] Lacou. [erg/s] Ṁ [M�/a]

7.021 60000 5.00E+033 1.40E-008
7.021 90000 2.55E+032 3.17E-010
9.027 60000 2.64E+034 7.50E-008
9.027 90000 1.54E+033 1.95E-009

13.040 60000 8.17E+034 2.30E-007
13.040 90000 6.78E+033 8.44E-009
17.050 60000 6.84E+034 1.87E-007
17.050 90000 1.95E+035 2.37E-007

Table 1:Acoustic luminosities and related mass loss rates for different models with different initial effective tempera-
tures.
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Figure 2: Time integral of the acoustic luminosity as a function of time for a 13.04M� model with initial effective
temperatures of 60.000K (left) and 90.000K (right).

The run of the opacity and the position of the models in the HRD

Magic temperatures From the non-linear simulations we found that there are only two final mean effective tem-
peratures for a wide range of initial effective temperatures. Considering the run of the opacity, these two
temperatures correspond to the descending branches of the opacity maxima towards lower temperatures (see
figure 4). Should this concept be correct, a third magic temperature above ≈ 100.000K would be expected.In
fact, some models show a jump to this temperature.
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Figure 4: Run of the opacity in the stellar envelope as a function of temperature. Different stellar models were used (different colours

correspond to different models), to cover a wide range of temperatures. The first maximum corresponds to the first He-Ionisation, the second

maximum to the second He-Ionisation. The third maximum is caused by the contribution of heavy elements.

Final positions in the HRD The final position of the simulated models in the HRD is of particular interest. Most of
the models presented move to the right and settle in a narrow temperature strip (figure 5). It is remarkably
close to the obeserved positions of Wolf-Rayet stars. We emphasize that we have not yet taken into account
different chemical compositions for the Wolf-Rayet models. Whether the chemical composition has a strong
influence on the final mean effective temperatures remains to been seen.
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Figure 5: Hertzsprung-Russell-Diagrammof the simulated models. Indicated are the initial models with the initial effective temperatures

(cruxes and stars) and the mean final effective temperatures (squares and circles). The mean luminosities stay constant. Arrows indicate

the direction of the evolution. For models with question marks, we were not able to determine a final mean temperature. Models without

arrows don’t change their mean temperature. The He-ZAMS is shown for comparison.
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