A PG 1159 close binary system

New light curves and spectra of SDSS J212531.92-010745.9

Sonja Schuh¹, Thorsten Nagel², Iris Traulsen¹, Benjamin Beeck¹

¹Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D–37077 Göttingen, Germany ²Institut für Astronomie und Astrophysik. Eberhard-Karls-Universität Tübingen, Sand 1, D–72076 Tübingen, Germany

INSTITUT FÜR AŠŢROPHYSIK GÖTTINGEN

Methods to measure masses of PG 1159 stars in order to test evolutionary scenarios are currently based on spectroscopic masses or asteroseismological mass determinations. SDSS J21253192–010745.9, a recently discovered PG 1159 star in a close binary system, may finally allow the first dynamical mass determination, and has so far been analysed on the basis of one SDSS spectrum and photometric monitoring.

In order to be able to phase radial velocity measurements of the system SDSS J212531.92-010745.9, we have followed up the photometric monitoring of this system. New white-light time series of the brightness variation of SDSS J212531.92-010745.9 with the Tübingen 80 cm and Göttingen 50 cm telescopes extend the monitoring into a second season (2006), and provide the observational basis for an improved orbital ephemeris determination.

A series of phase-resolved medium-resolution spectra have been obtained with the TWIN spectrograph at the 3.5 m telescope at Calar Alto, which will allow us to derive the radial velocity curves for the system, and to perform spectral analyses of the irradiating and irradiated components at different phases.

We give the improved ephemeris for the orbital motion of the system, based on a sine fit which now results in a period of 6.95573(5) h, and discuss the associated new amplitude determination in the context of the phased light curve variation profile. Furthermore, we present a first look at the newly obtained spectra. The light curve and radial velocities combined will allow us to carry out a mass determination.

The system SDSS J212531.92-010745.9

- overy SDSS J212531.92-010745.9 was discovered to show H $_{\Omega}$ emission during a systematic sear of SDSS archival data for white dwarf + main sequence companion candidates. Its SDSS magnitudes a u=17.15, g=17.45, t=17.79, z=17.83.

Kusterer, Stahn, Hügelmeyer, Dreizler, Gänsicke, & Schrei 9000 ber 2006, A&A 448, 25L Detailed memorialisticke, and the second

Variability And indeed, the system has been found to undergo brightness variations in follow-up time-resolved photometry. The light curve shows a periodicity of 6.95616(33), hatributable to orbital motion, with a flat bottom part, and no eclipes. The periodic brightening with a peak-to-peak amplitude of 0.7 mag can be interpreted as the light contribution by the irradiated side of the cool companion.

n auestions

- UHEI features in spectrum. The overall shape of the observed spectrum is well fitted with the combination of a PG 1159 star and a cool, irradiated companion, but especially the C IV spectral lines of the PG 1159 model atmosphere are not strong enough. There is another PG 1159 stars showing this phenomenon (Hugelmeyer, Dreizler, Homeier, Krzesinski, Werner, Nitta, & Kleinman 2006, A&A 454, 617), and also none of the deep absorption lines which some DO white dwarfs show can be fitted (e.g. Werner, Dreizler, Heber, Rauch, Wischk, & Hamer, 1956, A&A 207, 721.
- Hebed, Rabut, wholeva a negati 1990, non-case, rog-linproved orbital and stellar parameters including mass determination. Since there are no eclipses in SDSS_J212531.92–010745.9, a full solution must combine the individual projected radial velocity ampli-tudes of the two components with an inclination obtained from the light curve solution. Physics for irradiation of a companion by a very hot central object (see e.g., Aungwerpiwit, Ganacke, Devices-cold Hanner, Generatis: Departmenta, Allender, Printen, & Engle 2007, A&A 469, 270, or Edelmann et al. on HW Vir, in prep.). It will therefore be necessary to test if the reflection effect is ac modelled by different light curve simulation programs.

PG 0122 RXJ2117. PG 1159

PG 1707+4

puls (all masses in solar units; abopter accurate puls (all masses in solar units; abopter accurate Werner & Hervig 2006, PASP 118, 183, updated weekses from Table 2 in Miller Bertola us 2006, A&A 454, 845 PG 2131

00	0.55	0.01	1995 Ap.1450 350
		0.60	Corsico & Althaus 2006, A&A 454 863
00	0.53	0.59	Fu, Vauclair, Solheim, et al. 2007
		0.56	Corsico & Althaus 2007b, astro
+3	0.72	0.56	Vauclair, Moskalik, Pfeiffer, et a
		0.56	Corsico, Althaus, Miller Bertolam et al. 2007a, A&A 461, 1005
035	0.54	0.59	Kawaler & Bradley 1994, ApJ 427
		0.56	Corsico & Althaus 2006, A&A 454
		0.57	Corsico, Althaus, Kepler, et al.,thi
		0.59	Costa, Kepler, Winget, et al. 2007
27	0.53	0.57	Kawaler, Potter, Vučković, et al
		0.55	Corsico & Althaus 2006, A&A 454
			000

PG 1159 stars are hot hydrogen-deficient pre-WDs, be-lieved to be the outcome of a late or very late helium-shell flash during their post-AGB evolution. About 40 such ob-jects are known at present (Wenner & Henvig 2006, PASP 118, 183; see also Goure .), and a subset of ourrently 11 objects forms the class of the pulsating GW Vir variables. From their evolutionary history, typical masses should be around 0.6 M_☉. Spectroscopic and asteroseismological mass determinations rely on stellar structure and evolu-tion modelling (Table .), Given the uncertainties (up to so.1 M_☉) both in evolutionary tracks and asteroseismo-logical masses, an independent test would be desirable.

Light curve and ephemeris

Date	$t_{exp}[s]$	^t cycle ^[8]	Duration[8]	Telescope	Camera
2005/09/21	90	98	18900	80 cm	ST-7E
2005/09/22	90	98	18899	80 cm	ST-7E
2005/09/23	90	98	21758	80 cm	ST-7E
2005/09/23	180	194	4051	50 cm	STL-6303
2005/09/23	240	254	9656	50 cm	STL-630
2005/10/06	240	248	10202	50 cm	STL-6303
2005/10/07	240	246	14897	50 cm	STL-630
2005/10/08	240	248	9298	50 cm	STL-630
2005/10/10	90	98	19852	80 cm	ST-7E
2005/10/11	240	248	17872	50 cm	STL-6303
2005/10/18	90	98	16532	80 cm	ST-7E
2005/10/26	90	98	20095	80 cm	ST-7E
2006/09/12	60	63	15919	80 cm	STL-100
2006/09/13	60	63	21312	80 cm	STL-100
2006/09/20	60	63	23056	80 cm	STL-100
2006/09/20	240	247	17321	50 cm	STL-630
2006/09/21	60	63	22489	80 cm	STL-100
2006/09/21	180	187	21441	50 cm	STL-630
2006/09/22	60	63	22299	80 cm	STL-100
2006/09/22	180	187	1922	50 cm	STL-630
2006/09/22	420	427	13388	50 cm	STL-630
2006/09/23	90	93	22008	80 cm	STL-100
2006/09/23	180	187	20595	50 cm	STL-630
2006/09/24	60	63	9805	80 cm	STL-100
2006/09/24	240	247	24678	50 cm	STL-630
2006/09/27	90	93	9470	80 cm	STL-100
2006/09/27	240	247	3205	50 cm	STL-630
2006/10/08	240	247	11601	50 cm	STL-630
2006/10/09	240	247	19808	50 cm	STL-630
2006/10/10	240	247	19241	50 cm	STL-630
2006/10/11	240	247	19721	50 cm	STL-630
2006/10/12	60	63	18105	80 cm	SIL-100
2006/10/16	60	63	17602	80 cm	STL-100
2006/10/16	240	247	16763	50 cm	STL-630
2006/10/17	60	63	13798	80 cm	SIL-100
2006/10/17	120	123	4052	80 cm	STL-100
2006/10/17	240	247	18/58	50 cm	STL-630
2006/10/26	60	63	16031	80 cm	SIL-1001
2000/10/27	60	63	19/39	oucm	SIL-1001
2006/10/30	40	43	11603	80 cm	SIL-100
2006/11/15	240	247	18264	50 cm	SIL-6300

We have obtained new observations with the Tübingen 80 cm and the Göttingen 50 cm telescopes during 19 nights between September and November 2006. The full data set now availa-ble is listed in thein 1 with details of the set-up. In figure 2, we show the periodogram of the combined light ourve from 2005 and 2006. The correct position of the do-minant frequency can unambiguously be identified from the strong alias pattern. The gain in accuracy over the 2005 da-ta olone is illustrated by the central peak (grey line in the lower panel). The combined light curve was fitted with a non-tinear least-squares sine fit. It resulted in an improved period determination of 6.95573(5) hand a sinusoidal amplitude of 0.299(3) relative intensity change (0.284(28) mag). Refering to the most recent observation to define the zero point, we determine the ephemens of predicted maxima times to be

 $HJD = 2454055^{d}2134(4) + 0^{d}289822(2) \cdot E$

In moment, we compare the folded profile to the sinusoidal amplitude of 0.299(33) relative intensity change. Clearly, the observed peak-to-peak variation is not fully reproduced by the fit: this light curve shape emphasizes the superiority of a more realistic model over a plain sine fit, and validates the interpre-tation of the observed brightening as a reflection effect.

Phase-resolved spectroscopic observations

We obtained spectra of SDSS J212531.92-010745.9 in late August, 2007 (see We obtained spectra of SDSS J21253192-010745.5 in late August, 2007 (see b). Four shows a first look at the extracted spectra, some lines are marked. One clearly sees that the emission spectrum of the companion, irradiated by the PG 1159, varies with phase (values as predicted by the ephomeris) and almost vanishes at phase 0.5, leaving the PG 1159 spectrum with its typical absorption features. The variation in the continuum also shows that at phase <</td>

 10. the irradiated part of the companion contributes significantly to the system's overall flux. The emission lines of the companion workable Dopler shifts due to its changing radial velocity while orbiting the PG 1159.

Admonted commits We would like to thank Elke Reiff, Derek Homeier, Heike Schwager, Daniel-Jens Kusterer, Ronny Lutz, Sylvia Brandert, Sebastian Wende, Jens Adamczak, Agnes Hoffmann, Raif Kotulia, Simon Hügelmeyer, Markus Hundertmark, and Johannes Fleig for supporting the 2006 observations; and Kaus Reinsch for encouragement and technical support. We gratefully acknowledge the initialization of this project by Boris Gansicke and Matthias Schreiber who first directed our attention to this special object. Beeck thanks the organizers for generous support. I. Trusteen acknowledges at arwait grant by the DLR.

Evolutionary context