Planetary Debris as the Origin of Metals in White Dwarfs

J. Farihí (University of Leicester)

Conspirators:

M.A. Barstow, P. Dufour, N.C. Hambly, M. Jura, S. Redfield, B. Zuckerman

Relevance to White Dwarfs

- Who cares about disks and planets? (for those who did not attend the Bamberg meeting)
- Stars do not evolve in isolation
 - environment impacts both formation and evolution
 - atmosphere is influenced by environment
 - emergent flux across EM spectrum is a convolution
- Physical underpinning of stellar chemical content

Environmental Impact Factors

- Examples of important, external influences
 - forged and sustained hydrogen-deficiency
 - lack of DB stars in binaries and clusters
 - origin of He core white dwarfs
 - generation of magnetic fields
 - shaping of PNe
 - atmospheric evolution; dredge up vs. accretion
 - sources of free electrons
 - elemental abundance ratios

van Maanen's Star

(van Maanen 1917; SPY project: R. Napíwotzkí)

Spitzer Era Disk Studies

- 17+ white dwarfs with circumstellar dust
 - both DAZ and DBZ stars
 - Spitzer photometry (8 with spectroscopy)
 - infrared excesses between 2 and 24 microns
 - thermal emission peaks near 5 microns (T ≈ 1000 K)
- 3+ cases also have circumstellar metallic gas
 - double-peaked emission lines in the optical
 - material is extremely hydrogen and helium deficient
 - gas kinematics constrain orbit geometry

A Typical White Dwarf Disk (Farihi, Jura, & Zuckerman 2009)

Spectrum of White Dwarf System GD 16 NASA / JPL-Caltech / J. Farihi (University of Leicester)

Spitzer Space Telescope • IRAC • MIPS sig09-002

Dísk Frequency (Farihí, Jura, & Zuckerman 2009; 2010)

Dust Disks with Inner Holes

(Farihi, Zuckerman, & Becklin 2008)

Narrow Dust Rings (Farihi, Jura, & Zuckerman 2010)

Planetary Debris in All Cases?

- Most polluted stars lack obvious infrared excess
 - not pollution from companions
 - collisions can effectively destroy dust grains
 - critical parent body mass / disk density to sustain dust
 - narrow rings of dust may be difficult to detect
- Interstellar medium (ISM) accretion impossible?
 - lack of cool dust from Spitzer observations
 - clouds virtually absent in Local Bubble

DZ Stars in the SDSS

- Previous ISM challenges
 - Sion et al. 1990 first to suggest asteroid debris in DZ stars
 - Aanested et al. 1993 analyzed 15 DZ stars; velocity-biased?
- Analyzed 146 DZ stars from SDSS DR4+
- Can the ISM plausibly account for the metals?
 - positions, heights, space velocities, orbits
 - metal and hydrogen abundances
 - ISM gas/dust accretion physics

No Velocity Correlation

No Scale Height Correlation

Metal from Empty Space?

ISM Accretion Physics

- Problems with Bondi-Hoyle ISM capture
 - applies only to ideal fluids and plasmas
 - ignores angular momentum (Koester 1976)
 - ISM metals in dust grains; sublimation $<< R_{BH}$
 - vastly over-predicts accreted hydrogen
- Problems with Eddington ISM capture
 vastly under-predicts accreted metals

Calcium in Large Asteroids (Farihi, Barstow, Redfield, Dufour, & Hambly 2010)

Paradigm Shift

- Assuming ISM accretion occurs:
 - DAZ stars need small, hidden clouds
 - DZ stars need big, dense clouds
- DZ and DAZ stars created by same mechanism
 - only circumstellar pollution can explain both classes
- ISM accretion theory is no longer viable
 - for the observed population of metal-rich white dwarfs

Outlook

- between 3% and 30% of stars have rocky pollution
- detectable dust strong function of T_{eff} and dM_z/dt
 - subtle dust and gaseous debris likely at many more
- ISM accretion ruled out for current population
- average dM_z/dt correlates with T_{eff}
 - maximum enrichment occurs at hottest white dwarfs

