[WN] central stars of planetary nebulæ

Helge Todt,
Miriam Peña, Götz Gräfener, \& Wolf-Rainer Hamann htodt@astro.physik.uni-potsdam.de
Institut für Physik und Astronomie
Universität Potsdam

17. August 2010

Central stars: H-normal vs. [WC] - Spectra

H-normal CS: weak absorption lines of H, He

Schwarz et al. 1992

Central stars: H-normal vs. [WC] - Spectra

H-normal CS: weak absorption lines of H, He

Schwarz et al. 1992
[WC] CS: strong, broad emission lines of $\mathrm{C}, \mathrm{He}, \mathrm{O}$

Hubble/NASA

Wolf-Rayet stars: massive WC vs. low-mass [WC]

Massive WC: strong, broad emission lines of $\mathrm{C}, \mathrm{He}, \mathrm{O}$

ESO/R/MAMA+SERC/J/DSS1
[WC] CS: strong, broad emission lines of $\mathrm{C}, \mathrm{He}, \mathrm{O}$

Hubble/NASA

Wolf-Rayet stars: WC and WN, WN/C

Massive WC: strong, broad emission lines of $\mathrm{C}, \mathrm{He}, \mathrm{O}$

ESO/R/MAMA+SERC/J/DSS1

Massive WN/C: strong, broad emission lines of $\mathrm{N}, \mathrm{H}, \mathrm{He}, \mathrm{C}$

ESO/R/MAMA+SERC/J/DSS1

A naive question

Spectral similarities:

massive WC

[WC] central stars

A naive question

Spectral similarities:
massive WC
massive WN

[WC] central stars

 [WN] central stars?Are there [WN] central stars?

Evolution through the PN phase

Evolution through the PN phase - Thermal pulses

[WC] stars: AGB Final Thermal Pulse - AFTP

[WC] stars: Late Thermal Pulse - LTP

[WC] stars: Very Late Thermal Pulse - VLTP

[WC] stars: Very Late Thermal Pulse - VLTP

[WC] stars: Stellar evolutionary models

Chemical abundances after last TP

\rightarrow C- and O-rich stellar atmosphere

For comparison:
WN

\rightarrow NO [WN] stars expected

Our campaign: Do [WC] subtypes form an evolutionary sequence?

Our campaign: Do [WC] subtypes form an evolutionary sequence?

λ / \AA
Acker \& Neiner 2003

PoWR - Potsdam Wolf-Rayet model atmospheres

- Radiative transfer in co-moving frame \rightarrow stellar winds
- Full Non-LTE calculation of population numbers
- Iron line blanketing by superlevel approach
- Micro-clumping (optically thin)

PoWR - Potsdam Wolf-Rayet model atmospheres

- Radiative transfer in co-moving frame \rightarrow stellar winds
- Full Non-LTE calculation of population numbers
- Iron line blanketing by superlevel approach
- Micro-clumping (optically thin)

Parameters

- $\mathbf{L}_{*}=4 \pi \mathbf{R}_{*}{ }^{2} \cdot \sigma_{\mathrm{SB}} \mathbf{T}_{*}{ }^{4}$
- $\dot{\mathrm{M}}$
- \mathbf{v}_{∞}
- M_{*}
- element abundances

PB 8: Analysis - Observations

Spectral energy distribution

Observations vs. PoWR-model
optical: MIKE (6.5 m Magellan Telescope)

PB 8: Analysis - Results

T_{*}	52	kK
v_{∞}	1000	$\mathrm{~km} \mathrm{~s}^{-1}$
\dot{M}	8.5×10^{-8}	$M_{\odot} \mathrm{a}^{-1}$
$E_{\mathrm{B}-\mathrm{V}}$	0.41	mag
$d\left(L_{*}=6000 \mathrm{~L}_{\odot}\right)$	4.2	kpc
H	40	$\%$ mass fraction
He	55	$\%$ mass fraction
C	1.3	$\%$ mass fraction
N	2.0	$\%$ mass fraction
O	1.3	$\%$ mass fraction

PB 8: Analysis - Results

T_{*}	52	kK
v_{∞}	1000	$\mathrm{~km} \mathrm{~s}^{-1}$
\dot{M}	8.5×10^{-8}	$M_{\odot} \mathrm{a}^{-1}$
$E_{\mathrm{B}-\mathrm{V}}$	0.41	mag
$d\left(L_{*}=6000 \mathrm{~L}_{\odot}\right)$	4.2	kpc
H	40	$\%$ mass fraction
He	55	$\%$ mass fraction
C	1.3	$\%$ mass fraction
N	2.0	$\%$ mass fraction
O	1.3	$\%$ mass fraction

PB 8: Massive or low-mass WR star?

Problem: unknown distance $\rightarrow L$ unknown

PB 8: Massive or low-mass WR star?

Problem: unknown distance $\rightarrow L$ unknown
\rightarrow PB 8: Massive WR-star with a ring nebula or central star with a planetary nebula?

Problem: unknown distance $\rightarrow L$ unknown
\rightarrow PB 8: Massive WR-star with a ring nebula or central star with a planetary nebula?

- Nebular analysis by García, Peña \& Peimbert (2008)
- Small $v_{\text {exp }}$, typical for PNe
- T_{e} and n_{e} typical for young PNe

Problem: unknown distance $\rightarrow L$ unknown
\rightarrow PB 8: Massive WR-star with a ring nebula or central star with a planetary nebula?

- Nebular analysis by García, Peña \& Peimbert (2008)
- Small $v_{\text {exp }}$, typical for PNe
- T_{e} and n_{e} typical for young PNe
- Luminosity distances:

If	L / L_{\odot}	distance	height above Galactic plane	
CSPN:	6000	4.2 kpc	300 pc	\checkmark
WR star:	200000	24.2 kpc	1.7 kpc	\times

\rightarrow rather untypical location for a massive WR star

Problem: unknown distance $\rightarrow L$ unknown
\rightarrow PB 8: Massive WR-star with a ring nebula or central star with a planetary nebula?

- Nebular analysis by García, Peña \& Peimbert (2008)
- Small $v_{\text {exp }}$, typical for PNe
- T_{e} and n_{e} typical for young PNe
- Luminosity distances:

If	L / L_{\odot}	distance	height above Galactic plane	
CSPN:	6000	4.2 kpc	300 pc	\checkmark
WR star:	200000	24.2 kpc	1.7 kpc	\times

\rightarrow rather untypical location for a massive WR star
PB 8 is indeed a central star of a planetary nebula.

PB 8: A binary?

PB 8: A binary?

- NO shift of radial velocities of spectral lines (Méndez 1991)
- Nebula appears spherically symmetric

Composite picture (Schwarz et al. 1992)

PB 8: A binary?

- NO shift of radial velocities of spectral lines (Méndez 1991)
- Nebula appears spherically symmetric, also in velocity space

Composite picture
Longslit spectrogram of [O III] $5007 \AA$ Å (Schwarz et al. 1992)

PB 8: A binary?

- NO shift of radial velocities of spectral lines (Méndez 1991)
- Nebula appears spherically symmetric, also in velocity space

Composite picture
Longslit spectrogram of [O III] $5007 \AA$ Å (Schwarz et al. 1992)

PB 8: Related objects

PB 8 seems to be unique, but there are similar objects:

PB 8: Related objects

PB 8 seems to be unique, but there are similar objects:
Other WN-type CS candidates, i.e. helium-dominated spectrum with nitrogen lines:

- PMR $5 \rightarrow$ see next section
- LMC-N 66: only sometimes of WR type, irregular nebula, probably close binary

PB 8: Related objects

PB 8 seems to be unique, but there are similar objects:
Other WN-type CS candidates, i.e. helium-dominated spectrum with nitrogen lines:

- PMR $5 \rightarrow$ see next section
- LMC-N 66: only sometimes of WR type, irregular nebula, probably close binary

Other He-rich CSs, but without strong winds:

- LoTr 4 (Rauch et al. 1998)
- K 1-27 (Rauch et al. 1998)

PB 8 seems to be unique, but there are similar objects:
Other WN-type CS candidates, i.e. helium-dominated spectrum with nitrogen lines:

- PMR $5 \rightarrow$ see next section
- LMC-N 66: only sometimes of WR type, irregular nebula, probably close binary

Other He-rich CSs, but without strong winds:

- LoTr 4 (Rauch et al. 1998)
- K1-27 (Rauch et al. 1998)

He-sdO with similar composition, but without PN:

- KS 292, aka Hbg 292 (Rauch et al. 1991)

Observed stellar abundances vs. TP-models

- AFTP, LTP cannot explain supersolar N
- VLTP cannot explain remaining H

PB 8: Discussion - Evolutionary status

Observed stellar abundances vs. TP-models

- AFTP, LTP cannot explain supersolar N
- VLTP cannot explain remaining H

Nebular properties

- kinematic age $t_{\mathrm{Neb}} \leq 3000$ years, low N / O and He / H \rightarrow VLTP implausible
- low N / O (no HBB) points to lower mass CS
\rightarrow "slow" stellar evolution

PB 8: Discussion - Evolutionary status

Conclusion: perhaps

- weak VLTP (remaining H, supersolar N),
\rightarrow then nebula from born-again (He-enriched)
but: nebula not He-enriched
or:
- anomalous AFTP (surface abundances),
\rightarrow then normal nebula
but: cannot explain stellar N -enrichment

PMR 5: Optical spectrum from Morgan et al. (2003)

Highly reddened: $E_{B-\mathrm{V}}=3 \mathrm{mag}$

PMR 5: Optical spectrum +

Highly reddened: $E_{B-v}=3 \mathrm{mag}$

PMR 5: Analysis - Results

T_{*}	56	kK
v_{∞}	1500	$\mathrm{~km} \mathrm{~s}^{-1}$
$\dot{M}\left(L_{*}=6000 \mathrm{~L}_{\odot}\right)$	3.3×10^{-6}	$M_{\odot} \mathrm{a}^{-1}$
$E_{\mathrm{B}-\mathrm{V}}$	3.0	mag
$d\left(L_{*}=6000 \mathrm{~L}_{\odot}\right)$	0.5	kpc
H	20	$\%$ mass fraction
He	70	$\%$ mass fraction
C	<1	$\%$ mass fraction
N	10	$\%$ mass fraction
O	-	$\%$ mass fraction

\rightarrow massive WN star?

PMR 5: Discussion of central star status

- Nebula of PMR 5:

$$
v_{\exp } \sim 10 \times v_{\exp }(\mathrm{PN}), \text { typical for WR ring nebulæ }
$$

but $\quad n_{\mathrm{e}} \sim n_{\mathrm{e}}(\mathrm{PN})$, untypical for WR ring nebulæ

- Nebula of PMR 5:

$$
v_{\exp } \sim 10 \times v_{\exp }(\mathrm{PN}), \text { typical for WR ring nebulæ }
$$

but $\quad n_{\mathrm{e}} \sim n_{\mathrm{e}}(\mathrm{PN})$, untypical for WR ring nebulæ

- Luminosity distances: consistent with massive WR star

If	L / L_{\odot}	distance	height above Galactic plane	
CSPN:	6000	0.5 kpc	6 pc	\checkmark
massive WR:	200000	2.9 kpc	35 pc	\checkmark

- high $E_{\mathrm{B}-\mathrm{V}}$ untypical for $d=500 \mathrm{pc}$
- Nebula of PMR 5:

$$
v_{\exp } \sim 10 \times v_{\exp }(P N), \text { typical for WR ring nebulæ }
$$

but $\quad n_{\mathrm{e}} \sim n_{\mathrm{e}}(\mathrm{PN})$, untypical for WR ring nebulæ

- Luminosity distances: consistent with massive WR star

If	$/ L_{\odot}$	distance	height above Galactic plane	
CSPN:	6000	0.5 kpc	6 pc	\checkmark
massive WR:	200000	2.9 kpc	35 pc	\checkmark

- high $E_{B-\mathrm{V}}$ untypical for $d=500 \mathrm{pc}$

Chemistry and $v_{\text {exp }}$ point to a massive WN star.

Summary

PB 8:

first detected [WNC] CS
(Todt et al. 2010)

Summary

PB 8:
first detected [WNC] CS
(Todt et al. 2010)

PMR 5:

most probably a
massive WN star

Summary

PB 8:
first detected [WNC] CS
(Todt et al. 2010)

PMR 5:
 most probably a
 massive WN star

Chemical composition of PB 8
cannot be explained by any
existing evolutionary scenario.

PB 8:
first detected [WNC] CS
(Todt et al. 2010)
PMR 5:
most probably a
massive WN star

Chemical composition of PB 8
cannot be explained by any
existing evolutionary scenario.

Thanks for your attention.

